

Tutorial Handouts: mod_perl 2.0 By Example

by Philippe M. Chiasson
http://gozer.ectoplasm.org/
<gozer@ectoplasm.org>

TicketMaster

ApacheCon US 2004
Saturday, November 13th 2004

Las Vegas, Nevada, USA

This tutorial is available from: http://gozer.ectoplasm.org/talks/

Last modified Sat Nov 13 09:21:54 2004 GMT

113 Nov 2004

Table of Contents:Tutorial Handouts: mod_perl 2.0 By Example

1 Getting Your Feet Wet With mod_perl 2.0

13 Nov 20042

Philippe M. Chiasson1 Getting Your Feet Wet With mod_perl 2.0

1.1 Description
This chapter gives you the bare minimum information to get you started with mod_perl 2.0. For most
people it’s sufficient to get going.

1.2 Prerequisites
Before building mod_perl 2.0 you need to have its prerequisites installed. If you don’t have them, down-
load and install them first, using the information in the following sections. Otherwise proceed directly to
the mod_perl building instructions.

The mod_perl 2.0 prerequisites are:

Apache

Apache 2.0 is required. mod_perl 2.0 does not work with Apache 1.3.

Perl
prefork MPM

Requires at least Perl version 5.6.0. But we strongly suggest to use at least version 5.6.1, since
5.6.0 is quite buggy.

You don’t need to have threads-support enabled in Perl. If you do have it, it must be ithreads
and not 5005threads! If you have:

 % perl5.8.0 -V:use5005threads
 use5005threads=’define’;

you must rebuild Perl without threads enabled or with -Dusethreads . Remember that threads
support slows things down, so don’t enable it unless you really need it.

threaded MPMs

Require at least Perl version 5.8.0 with ithreads support built-in. That means that it should
report:

 % perl5.8.0 -V:useithreads -V:usemultiplicity
 useithreads=’define’;
 usemultiplicity=’define’;

If that’s not what you see rebuild Perl with -Dusethreads .

1.2.1 Downloading Stable Release Sources

If you are going to install mod_perl on a production site, you want to use the officially released stable
components. Since the latest stable versions change all the time you should check for the latest stable
version at the listed below URLs:

313 Nov 2004

1.1 DescriptionGetting Your Feet Wet With mod_perl 2.0

Perl

Download from: http://cpan.org/src/README.html

This direct link which symlinks to the latest release should work too:
http://cpan.org/src/stable.tar.gz.

For the purpose of examples in this chapter we will use the package named perl-5.8.x.tar.gz, where x
should be replaced with the real version number.

Apache

Download from: http://www.apache.org/dist/httpd/

For the purpose of examples in this chapter we will use the package named httpd-2.x.xx.tar.gz, where
x.xx should be replaced with the real version number.

1.2.2 Getting Bleeding Edge CVS Sources

If you really know what you are doing you can use the cvs versions of the components. Chances are that
you don’t want to them on a production site. You have been warned!

Perl

 # (--delete to ensure a clean state)
 % rsync -acvz --delete --force \
 rsync://ftp.linux.activestate.com/perl-current/ perl-current

If you are re-building Perl after rsync-ing, make sure to cleanup first:

 % make distclean

before running ./Configure .

You’ll also want to install (at least) LWP if you want to fully test mod_perl. You can install LWP
with CPAN.pm shell:

 % perl -MCPAN -e ’install("LWP")’

Apache

To download the cvs version of httpd-2.0 and bring it to the same state of the distribution package,
execute the following commands:

 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login

The password is "anoncvs".

13 Nov 20044

Philippe M. Chiasson1.2.2 Getting Bleeding Edge CVS Sources

http://cpan.org/src/README.html
http://cpan.org/src/stable.tar.gz
http://www.apache.org/dist/httpd/

 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co httpd-2.0
 % cd httpd-2.0/srclib
 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co apr
 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co apr-util
 % cd ..
 % ./buildconf

Once extracted, whenever you want to sync with the latest httpd-2.0 version and rebuild, run:

 % cd httpd-2.0
 % cvs up -dP
 % make distclean && ./buildconf

1.2.3 Configuring and Installing Prerequisites

If you don’t have the prerequisites installed yet, install them now.

Perl

 % cd perl-5.8.x
 % ./Configure -des -Dusethreads
 % make && make test && make install

If you want to debug mod_perl segmentation faults, add the following ./Configure options:

 -Doptimize=’-g’ -Dusedevel

Apache

 % cd httpd-2.x.xx
 % ./configure --prefix=$HOME/httpd/prefork --with-mpm=prefork
 % make && make install

1.3 mod_perl Installation
First of all check that you have the prerequisites installed.

In this chapter we assume that httpd was installed under $HOME/httpd/prefork.

Next, download the mod_perl 2.0 source from: http://perl.apache.org/download/.

Now, configure mod_perl:

 % tar -xvzf mod_perl-2.x.xx.tar.gz
 % cd modperl-2.0
 % perl Makefile.PL MP_APXS=$HOME/httpd/bin/apxs \
 MP_INST_APACHE2=1

where MP_APXS is a full path to the apxs executable.

513 Nov 2004

1.3 mod_perl InstallationGetting Your Feet Wet With mod_perl 2.0

http://perl.apache.org/download/

Finally, build, test and install mod_perl:

 % make && make test && make install

Become root before doing make install if installing system-wide.

If something goes wrong or you need to enable optional features please refer to
http://perl.apache.org/docs/2.0/user/install/install.html.

1.4 Configuration
Enable mod_perl built as DSO, by adding to httpd.conf:

 LoadModule perl_module modules/mod_perl.so

Next, tell Perl where to find mod_perl2 libraries:

 PerlModule Apache2

There are many other configuration options which you can find at
http://perl.apache.org/docs/2.0/user/config/config.html.

If you want to run mod_perl 1.0 code on mod_perl 2.0 server enable the compatibility layer:

 PerlModule Apache::compat

For more information refer to http://perl.apache.org/docs/2.0/user/compat/compat.html.

1.5 Server Launch and Shutdown
Apache is normally launched with apachectl :

 % $HOME/httpd/prefork/bin/apachectl start

and shut down with:

 % $HOME/httpd/prefork/bin/apachectl stop

Check $HOME/httpd/prefork/logs/error_log to see that the server has started and it’s a right one. It should
say something similar to:

 [Tue May 25 09:24:28 2004] [notice] Apache/2.0.50-dev (Unix)
 mod_perl/1.99_15-dev Perl/v5.8.4 mod_ssl/2.0.50-dev OpenSSL/0.9.7c
 DAV/2 configured -- resuming normal operations

13 Nov 20046

Philippe M. Chiasson1.4 Configuration

http://perl.apache.org/docs/2.0/user/install/install.html
http://perl.apache.org/docs/2.0/user/config/config.html
http://perl.apache.org/docs/2.0/user/compat/compat.html

1.6 Registry Scripts
To enable registry scripts add to httpd.conf:

 Alias /perl/ /home/httpd/2.0/perl/
 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlOptions +ParseHeaders
 Options +ExecCGI
 </Location>

and now assuming that we have the following script:

 #!/usr/bin/perl
 print "Content-type: text/plain\n\n";
 print "mod_perl 2.0 rocks!\n";

saved in /home/httpd/httpd-2.0/perl/rock.pl. Make the script executable and readable by everybody:

 % chmod a+rx /home/httpd/httpd-2.0/perl/rock.pl

Of course the path to the script should be readable by the server too. In the real world you probably want
to have a tighter permissions, but for the purpose of testing, that things are working, this is just fine.

Now restart the server and issue a request to http://localhost/perl/rock.pl and you should get the response:

 mod_perl 2.0 rocks!

If that didn’t work check the error_log file.

1.7 Handler Modules
Finally check that you can run mod_perl handlers. Let’s write a response handler similar to the registry
script from the previous section:

 #file:MyApache/Rocks.pm
 #----------------------
 package MyApache::Rocks;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);

713 Nov 2004

1.6 Registry ScriptsGetting Your Feet Wet With mod_perl 2.0

http://localhost/perl/rock.pl

 print "mod_perl 2.0 rocks!\n";

 return Apache::OK;
 }
 1;

Save the code in the file MyApache/Rocks.pm, somewhere where mod_perl can find it. For example let’s
put it under /home/httpd/httpd-2.0/perl/MyApache/Rocks.pm, and we tell mod_perl that
/home/httpd/httpd-2.0/perl/ is in @INC, via a startup file which includes just:

 use lib qw(/home/httpd/httpd-2.0/perl);

and loaded from httpd.conf:

 PerlRequire /home/httpd/httpd-2.0/perl/startup.pl

Now we can configure our module in httpd.conf:

 <Location /rocks>
 SetHandler perl-script
 PerlResponseHandler MyApache::Rocks
 </Location>

Now restart the server and issue a request to http://localhost/rocks and you should get the response:

 mod_perl 2.0 rocks!

If that didn’t work check the error_log file.

13 Nov 20048

Philippe M. Chiasson1.7 Handler Modules

http://localhost/rocks

2 New Concepts

913 Nov 2004

2 New ConceptsNew Concepts

2.1 Description
This chapter covers several concepts used in the presentation.

2.2 Exceptions
Apache and APR API return a status code for almost all methods, so if you didn’t check the return code
and handled any possible problems, you may have silent failures which may cause all kind of obscure
problems. On the other hand checking the status code after each call is just too much of a kludge and
makes quick prototyping/development almost impossible, not talking about the code readability. Having
methods return status codes, also complicates the API if you need to return other values.

Therefore to keep things nice and make the API readable we decided to not return status codes, but instead
throw exceptions with APR::Error objects for each method that fails. If you don’t catch those excep-
tions, everything works transparently - perl will intercept the exception object and die() with a proper
error message. So you get all the errors logged without doing any work.

Now, in certain cases you don’t want to just die, but instead the error needs to be trapped and handled. For
example if some IO operation times out, may be it is OK to trap that and try again. If we were to die with
an error message, you would have had to match the error message, which is ugly, inefficient and may not
work at all if locale error strings are involved. Therefore you need to be able to get the original status code
that Apache or APR has generated. And the exception objects give you that if you want to. Moreover the
objects contain additional information, such as the function name (in case you were eval’ing several
commands in one block), file and line number where that function was invoked from. More attributes
could be added in the future.

APR::Error uses Perl operator overloading, such that in boolean and numerical contexts, the object
returns the status code; in the string context the full error message is returned.

When intercepting exceptions you need to check whether $@ is an object (reference). If your application
uses other exception objects you additionally need to check whether this is a an APR::Error object.
Therefore most of the time this is enough:

 eval { $obj->mp_method() };
 if ($@ && $ref $@ && $@ == $some_code)
 warn "handled exception: $@";
 }

But with other, non-mod_perl, exception objects you need to do:

 eval { $obj->mp_method() };
 if ($@ && $ref $@ eq ’APR::Error’ && $@ == $some_code)
 warn "handled exception: $@";
 }

In theory you could even do:

13 Nov 200410

Philippe M. Chiasson2.1 Description

 eval { $obj->mp_method() };
 if ($@ && $@ == $some_code)
 warn "handled exception: $@";
 }

but it’s possible that the method will die with a plain string and not an object, in which case $@ ==
$some_code won’t quite work. Remember that mod_perl throws exception objects only when Apache
and APR fail, and in a few other special cases of its own (like exit).

 warn "handled exception: $@" if $@ && $ref $@;

For example you wrote a code that performs a socket read:

 my $rlen = $sock->recv(my $buff, 1024);
 warn "read $rlen bytes\n";

and in certain cases it times out. The code will die and log the reason for the failure, which is fine, but later
on you may decide that you want to have another attempt to read before dying. In which case you rewrite
the code to handle the exception like this:

 use APR::Const -compile => qw(TIMEUP);
 my $buff;
 my $tries = 0;
 RETRY: my $rlen = eval { $sock->recv($buff, 1024) };
 if ($@) {
 die $@ unless ref $@ && $@ == APR::TIMEUP;
 goto RETRY if $tries++ < 3;
 }
 warn "read $rlen bytes\n";

Notice that we handle non-object and non-APR::Error exceptions as well, by simply rethrowing them.

You certainly want to have a limit on how many times the code retries the operation as in this example and
you probably want to add some fine grained sleep time between attempts, which can be achieved with
select . As a result the retry code may look like this:

 RETRY: my $rlen = eval { $sock->recv($buff, 1024) };
 if ($@) {
 die $@ unless ref $@ && $@ == APR::TIMEUP;
 if ($tries++ < 3) {
 # sleep 250msec
 select undef, undef, undef, 0.25;
 goto RETRY;
 }
 }

Finally, the class is called APR::Error because it needs to be used outside mod_perl as well, when
called from APR applications written in Perl.

1113 Nov 2004

2.2 ExceptionsNew Concepts

2.3 Bucket Brigades
Apache 2.0 allows multiple modules to filter both the request and the response. Now one module can pipe
its output as an input to another module as if another module was receiving the data directly from the TCP
stream. The same mechanism works with the generated response.

With I/O filtering in place, simple filters, like data compression and decompression, can be easily imple-
mented and complex filters, like SSL, are now possible without needing to modify the the server code
which was the case with Apache 1.3.

In order to make the filtering mechanism efficient and avoid unnecessary copying, the Bucket Brigades
technology was introduced.

A bucket represents a chunk of data. Buckets linked together comprise a brigade. Each bucket in a brigade
can be modified, removed and replaced with another bucket. The goal is to minimize the data copying
where possible. Buckets come in different types, such as files, data blocks, end of stream indicators, pools,
etc. To manipulate a bucket one doesn’t need to know its internal representation.

The stream of data is represented by bucket brigades. When a filter is called it gets passed the brigade that
was the output of the previous filter. This brigade is then manipulated by the filter (e.g., by modifying
some buckets) and passed to the next filter in the stack.

The following figure depicts an imaginary bucket brigade:

13 Nov 200412

Philippe M. Chiasson2.3 Bucket Brigades

The figure tries to show that after the presented bucket brigade has passed through several filters some
buckets were removed, some modified and some added. Of course the handler that gets the brigade cannot
tell the history of the brigade, it can only see the existing buckets in the brigade.

Bucket brigades are discussed in detail in the protocol handlers and I/O filtering chapters.

1313 Nov 2004

2.3 Bucket BrigadesNew Concepts

3 Introducing mod_perl Handlers

13 Nov 200414

Philippe M. Chiasson3 Introducing mod_perl Handlers

3.1 Description
This chapter provides an introduction into mod_perl handlers.

3.2 Handler Anatomy
Apache distinguishes between numerous phases for which it provides hooks (because the C functions are
called ap_hook_<phase_name>) where modules can plug various callbacks to extend and alter the default
behavior of the webserver. mod_perl provides a Perl interface for most of the available hooks, so
mod_perl modules writers can change the Apache behavior in Perl. These callbacks are usually referred to
as handlers and therefore the configuration directives for the mod_perl handlers look like: Perl-
FooHandler , where Foo is one of the handler names. For example PerlResponseHandler config-
ures the response callback.

A typical handler is simply a perl package with a handler subroutine. For example:

 file:MyApache/CurrentTime.pm

 package MyApache::CurrentTime;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->print("The time is: " . scalar(localtime) . "\n");

 return Apache::OK;
 }
 1;

This handler simply returns the current date and time as a response.

Since this is a response handler, we configure it as a such in httpd.conf:

 PerlResponseHandler MyApache::CurrentTime

Since the response handler should be configured for a specific location, let’s write a complete configura-
tion section:

 PerlModule MyApache::CurrentTime
 <Location /time>
 SetHandler modperl
 PerlResponseHandler MyApache::CurrentTime
 </Location>

1513 Nov 2004

3.1 DescriptionIntroducing mod_perl Handlers

Now when a request is issued to http://localhost/time this response handler is executed and a response that
includes the current time is returned to the client.

3.3 mod_perl Handler Categories
The mod_perl handlers can be divided by their application scope in several categories:

Server life cycle
PerlOpenLogsHandler
PerlPostConfigHandler
PerlChildInitHandler
PerlChildExitHandler

Protocols
PerlPreConnectionHandler
PerlProcessConnectionHandler

Filters
PerlInputFilterHandler
PerlOutputFilterHandler

HTTP Protocol
PerlPostReadRequestHandler
PerlTransHandler
PerlMapToStorageHandler
PerlInitHandler
PerlHeaderParserHandler
PerlAccessHandler
PerlAuthenHandler
PerlAuthzHandler
PerlTypeHandler
PerlFixupHandler
PerlResponseHandler
PerlLogHandler
PerlCleanupHandler

3.4 Stacked Handlers
For each phase there can be more than one handler assigned (also known as hooks, because the C func-
tions are called ap_hook_<phase_name>). Phases’ behavior varies when there is more then one handler
registered to run for the same phase. The following table specifies each handler’s behavior in this situa-
tion:

 Directive Type

 PerlOpenLogsHandler RUN_ALL
 PerlPostConfigHandler RUN_ALL
 PerlChildInitHandler VOID

13 Nov 200416

Philippe M. Chiasson3.3 mod_perl Handler Categories

http://localhost/time

 PerlChildExitHandler RUN_ALL

 PerlPreConnectionHandler RUN_ALL
 PerlProcessConnectionHandler RUN_FIRST

 PerlPostReadRequestHandler RUN_ALL
 PerlTransHandler RUN_FIRST
 PerlMapToStorageHandler RUN_FIRST
 PerlInitHandler RUN_ALL
 PerlHeaderParserHandler RUN_ALL
 PerlAccessHandler RUN_ALL
 PerlAuthenHandler RUN_FIRST
 PerlAuthzHandler RUN_FIRST
 PerlTypeHandler RUN_FIRST
 PerlFixupHandler RUN_ALL
 PerlResponseHandler RUN_FIRST
 PerlLogHandler RUN_ALL
 PerlCleanupHandler RUN_ALL

 PerlInputFilterHandler VOID
 PerlOutputFilterHandler VOID

Note: PerlChildExitHandler and PerlCleanupHandler are not real Apache hooks, but to
mod_perl users they behave as all other hooks.

And here is the description of the possible types:

VOID

Handlers of the type VOID will be all executed in the order they have been registered disregarding
their return values. Though in mod_perl they are expected to return Apache::OK .

RUN_FIRST

Handlers of the type RUN_FIRST will be executed in the order they have been registered until the
first handler that returns something other than Apache::DECLINED . If the return value is
Apache::DECLINED , the next handler in the chain will be run. If the return value is
Apache::OK the next phase will start. In all other cases the execution will be aborted.

RUN_ALL

Handlers of the type RUN_ALL will be executed in the order they have been registered until the first
handler that returns something other than Apache::OK or Apache::DECLINED .

For C API declarations see include/ap_config.h, which includes other types which aren’t exposed by the
mod_perl handlers.

1713 Nov 2004

3.4 Stacked HandlersIntroducing mod_perl Handlers

4 Server Life Cycle Handlers

13 Nov 200418

Philippe M. Chiasson4 Server Life Cycle Handlers

4.1 Description
This chapter discusses server life cycle and the mod_perl handlers participating in it.

4.2 Server Life Cycle
The following diagram depicts the Apache 2.0 server life cycle and highlights which handlers are available
to mod_perl 2.0:

Apache 2.0 starts by parsing the configuration file. After the configuration file is parsed, the PerlOpen-
LogsHandler handlers are executed if any. After that it’s a turn of PerlPostConfigHandler
handlers to be run. When the post_config phase is finished the server immediately restarts, to make sure

1913 Nov 2004

4.1 DescriptionServer Life Cycle Handlers

that it can survive graceful restarts after starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the actual work. Depending on
the used MPM, these can be threads, processes and a mixture of both. For example the worker MPM
spawns a number of processes, each running a number of threads. When each child process is started
PerlChildInit handlers are executed. Notice that they are run for each starting process, not a thread.

From that moment on each working thread processes connections until it’s killed by the server or the
server is shutdown.

4.2.1 Startup Phases Demonstration Module

Let’s look at the following example that demonstrates all the startup phases:

 file:MyApache/StartupLog.pm

 package MyApache::StartupLog;

 use strict;
 use warnings;

 use Apache::Log ();
 use Apache::ServerUtil ();

 use Fcntl qw(:flock);
 use File::Spec::Functions;

 use Apache::Const -compile => ’OK’;

 my $log_file = catfile "logs", "startup_log";
 my $log_fh;

 sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = catfile Apache::ServerUtil::server_root, $log_file;

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
 }

 sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache::OK;
 }

 sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;

13 Nov 200420

Philippe M. Chiasson4.2.1 Startup Phases Demonstration Module

 }

 sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
 }

 sub say {
 my($caller) = (caller(1))[3] =~ /([^:]+)$/;
 if (defined $log_fh) {
 flock $log_fh, LOCK_EX;
 printf $log_fh "[%s] - %-11s: %s\n",
 scalar(localtime), $caller, $_[0];
 flock $log_fh, LOCK_UN;
 }
 else {
 # when the log file is not open
 warn __PACKAGE__ . " says: $_[0]\n";
 }
 }

 my $parent_pid = $$;
 END {
 my $msg = "process $$ is shutdown";
 $msg .= "\n". "-" x 20 if $$ == $parent_pid;
 say($msg);
 }

 1;

And the httpd.conf configuration section:

 <IfModule prefork.c>
 StartServers 4
 MinSpareServers 4
 MaxSpareServers 4
 MaxClients 10
 MaxRequestsPerChild 0
 </IfModule>

 PerlModule MyApache::StartupLog
 PerlOpenLogsHandler MyApache::StartupLog::open_logs
 PerlPostConfigHandler MyApache::StartupLog::post_config
 PerlChildInitHandler MyApache::StartupLog::child_init
 PerlChildExitHandler MyApache::StartupLog::child_exit

When we perform a server startup followed by a shutdown, the logs/startup_log is created if it didn’t exist
already (it shares the same directory with error_log and other standard log files), and each stage appends
to that file its log information. So when we perform:

 % bin/apachectl start && bin/apachectl stop

2113 Nov 2004

4.2.1 Startup Phases Demonstration ModuleServer Life Cycle Handlers

the following is getting logged to logs/startup_log:

 [Sun Jun 6 01:50:06 2004] - open_logs : process 24189 is born to reproduce
 [Sun Jun 6 01:50:06 2004] - post_config: configuration is completed
 [Sun Jun 6 01:50:07 2004] - END : process 24189 is shutdown

 [Sun Jun 6 01:50:08 2004] - open_logs : process 24190 is born to reproduce
 [Sun Jun 6 01:50:08 2004] - post_config: configuration is completed
 [Sun Jun 6 01:50:09 2004] - child_init : process 24192 is born to serve
 [Sun Jun 6 01:50:09 2004] - child_init : process 24193 is born to serve
 [Sun Jun 6 01:50:09 2004] - child_init : process 24194 is born to serve
 [Sun Jun 6 01:50:09 2004] - child_init : process 24195 is born to serve
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24193 now exits
 [Sun Jun 6 01:50:10 2004] - END : process 24193 is shutdown
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24194 now exits
 [Sun Jun 6 01:50:10 2004] - END : process 24194 is shutdown
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24195 now exits
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24192 now exits
 [Sun Jun 6 01:50:10 2004] - END : process 24192 is shutdown
 [Sun Jun 6 01:50:10 2004] - END : process 24195 is shutdown
 [Sun Jun 6 01:50:10 2004] - END : process 24190 is shutdown

First of all, we can clearly see that Apache always restart itself after the first post_config phase is over.
The logs show that the post_config phase is preceded by the open_logs phase. Only after Apache has
restarted itself and has completed the open_logs and post_config phase again, the child_init phase is run
for each child process. In our example we have had the setting StartServers=4 , therefore you can see
four child processes were started.

Finally you can see that on server shutdown, the child_exit phase is run for each child process and the END
{} block is executed by the parent process and each of the child processes. This is because that END block
was inherited from the parent on fork.

However the presented behavior varies from MPM to MPM. This demonstration was performed using
prefork mpm. Other MPMs like winnt, may run open_logs and post_config more than once. Also the END
blocks may be run more times, when threads are involved. You should be very careful when designing
features relying on the phases covered in this chapter if you plan support multiple MPMs. The only thing
that’s sure is that you will have each of these phases run at least once.

Apache also specifies the pre_config phase, which is executed before the configuration files are parsed,
but this is of no use to mod_perl, because mod_perl is loaded only during the configuration phase.

Now let’s discuss each of the mentioned startup handlers and their implementation in the
MyApache::StartupLog module in detail.

4.2.2 PerlOpenLogsHandler

The open_logs phase happens just before the post_config phase.

13 Nov 200422

Philippe M. Chiasson4.2.2 PerlOpenLogsHandler

Handlers registered by PerlOpenLogsHandler are usually used for opening module-specific log files
(e.g., httpd core and mod_ssl open their log files during this phase).

At this stage the STDERR stream is not yet redirected to error_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

As we have seen in the MyApache::StartupLog::open_logs handler, the open_logs phase
handlers accept four arguments: the configuration pool, the logging stream pool, the temporary pool and
the main server object:

 sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = catfile Apache::ServerUtil::server_root, $log_file;

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
 }

In our example the handler uses the function Apache::Server::server_root() to set the full
path to the log file, which is then opened for appending and set to unbuffered mode. Finally it logs the fact
that it’s running in the parent process.

As you’ve seen in the example this handler is configured by adding to the top level of httpd.conf:

 PerlOpenLogsHandler MyApache::StartupLog::open_logs

This handler can be executed only by the main server. If you want to traverse the configured virtual hosts,
you can accomplish that using a simple loop. For example to print out the configured port numbers do:

 use Apache::Server ();
 # ...
 sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;

 my $port = $s->port;
 warn "base port: $port\n";
 for (my $vs = $s->next; $vs; $vs = $vs->next) {
 my $port = $vs->port;
 warn "vhost port: $port\n";
 }
 return Apache::OK;
 }

2313 Nov 2004

4.2.2 PerlOpenLogsHandlerServer Life Cycle Handlers

$s is the base server object.

The pool arguments in this phase and PerlPostConfigHandler are:

$conf_pool is the main process sub-pool, therefore its life-span is the same as the main process’s
one. The main process is a sub-pool of the global pool.

$log_pool is a global pool’s sub-pool, therefore its life-span is the same as the Apache program’s
one.

$temp_pool is a $conf_pool subpool, created before the config phase, lives through the
open_logs phase and get destroyed after the post_config phase. So you will want to use that pool for
doing anything that can be discarded before the requests processing starts.

4.2.3 PerlPostConfigHandler

The post_config phase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in the post_config phase you have an access to a complete configuration tree,
using the Apache::Directive module.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the post_config() handler:

 sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache::OK;
 }

As you can see, its arguments are identical to the open_logs phase’s handler. In this example handler we
don’t do much but logging that the configuration was completed and returning right away.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlPostConfigHandler MyApache::StartupLog::post_config

4.2.4 PerlChildInitHandler

The child_init phase happens immediately after the child process is spawned. Each child process (not a
thread!) will run the hooks of this phase only once in their life-time.

13 Nov 200424

Philippe M. Chiasson4.2.3 PerlPostConfigHandler

In the prefork MPM this phase is useful for initializing any data structures which should be private to each
process. For example Apache::DBI pre-opens database connections during this phase and
Apache::Resource sets the process’ resources limits.

This phase is of type VOID.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the child_init() handler:

 sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;
 }

The child_init() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child process it’s run in and returns.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildInitHandler MyApache::StartupLog::child_init

4.2.5 PerlChildExitHandler

Opposite to the child_init phase, the child_exit phase is executed before the child process exits. Notice that
it happens only when the process exits, not the thread (assuming that you are using a threaded mpm).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the child_exit() handler:

 sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
 }

The child_exit() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child process it’s run in and returns.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildExitHandler MyApache::StartupLog::child_exit

2513 Nov 2004

4.2.5 PerlChildExitHandlerServer Life Cycle Handlers

5 Protocol Handlers

13 Nov 200426

Philippe M. Chiasson5 Protocol Handlers

5.1 Description
This chapter explains how to implement Protocol (Connection) Handlers in mod_perl.

5.2 Connection Cycle Phases
As we saw earlier, each child server (be it a thread or a process) is engaged in processing connections.
Each connection may be served by different connection protocols, e.g., HTTP, POP3, SMTP, etc. Each
connection may include more than one request, e.g., several HTTP requests can be served over a single
connection, when several images are requested for the same webpage.

The following diagram depicts the connection life cycle and highlights which handlers are available to
mod_perl 2.0:

2713 Nov 2004

5.1 DescriptionProtocol Handlers

When a connection is issued by a client, it’s first run through PerlPreConnectionHandler and then
passed to the PerlProcessConnectionHandler , which generates the response. When PerlPro-
cessConnectionHandler is reading data from the client, it can be filtered by connection input
filters. The generated response can be also filtered though connection output filters. Filters are usually
used for modifying the data flowing though them, but can be used for other purposes as well (e.g., logging
interesting information).

Now let’s discuss each of the PerlPreConnectionHandler and PerlProcessConnection-
Handler handlers in detail.

5.2.1 PerlPreConnectionHandler

The pre_connection phase happens just after the server accepts the connection, but before it is handed off
to a protocol module to be served. It gives modules an opportunity to modify the connection as soon as
possible and insert filters if needed. The core server uses this phase to setup the connection record based
on the type of connection that is being used. mod_perl itself uses this phase to register the connection
input and output filters.

In mod_perl 1.0 during code development Apache::Reload was used to automatically reload modified
since the last request Perl modules. It was invoked during post_read_request, the first HTTP request’s
phase. In mod_perl 2.0 pre_connection is the earliest phase, so if we want to make sure that all modified
Perl modules are reloaded for any protocols and its phases, it’s the best to set the scope of the Perl inter-
preter to the lifetime of the connection via:

 PerlInterpScope connection

and invoke the Apache::Reload handler during the pre_connection phase. However this develop-
ment-time advantage can become a disadvantage in production--for example if a connection, handled by
HTTP protocol, is configured as KeepAlive and there are several requests coming on the same connec-
tion and only one handled by mod_perl and the others by the default images handler, the Perl interpreter
won’t be available to other threads while the images are being served.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV, because it’s not known yet which resource the request will be
mapped to.

A pre_connection handler accepts connection record and socket objects as its arguments:

 sub handler {
 my($c, $socket) = @_;
 # ...
 return Apache::OK;
 }

Here is a useful pre_connection phase example: provide a facility to block remote clients by their IP,
before too many resources were consumed. This is almost as good as a firewall blocking, as it’s executed
before Apache has started to do any work at all.

13 Nov 200428

Philippe M. Chiasson5.2.1 PerlPreConnectionHandler

MyApache::BlockIP2 retrieves client’s remote IP and looks it up in the black list (which should
certainly live outside the code, e.g. dbm file, but a hardcoded list is good enough for our example).

 #file:MyApache/BlockIP2.pm
 #-------------------------
 package MyApache::BlockIP2;

 use strict;
 use warnings;

 use Apache::Connection ();

 use Apache::Const -compile => qw(FORBIDDEN OK);

 my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

 sub handler {
 my $c = shift;

 my $ip = $c->remote_ip;
 if (exists $bad_ips{$ip}) {
 warn "IP $ip is blocked\n";
 return Apache::FORBIDDEN;
 }

 return Apache::OK;
 }

 1;

This all happens during the pre_connection phase:

 PerlPreConnectionHandler MyApache::BlockIP2

If a client connects from a blacklisted IP, Apache will simply abort the connection without sending any
reply to the client, and move on to serving the next request.

5.2.2 PerlProcessConnectionHandler

The process_connection phase is used to process incoming connections. Only protocol modules should
assign handlers for this phase, as it gives them an opportunity to replace the standard HTTP processing
with processing for some other protocols (e.g., POP3, FTP, etc.).

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV. Therefore the only way to run protocol servers different than
the core HTTP is inside dedicated virtual hosts.

A process_connection handler accepts a connection record object as its only argument, a socket object can
be retrieved from the connection record object.

2913 Nov 2004

5.2.2 PerlProcessConnectionHandlerProtocol Handlers

 sub handler {
 my ($c) = @_;
 my $socket = $c->client_socket;
 $sock->opt_set(APR::SO_NONBLOCK, 0);
 # ...
 return Apache::OK;
 }

Most likely you’ll need to set the socket to perform blocking IO. On some platforms (e.g. Linux) Apache
gives us a socket which is set for blocking, on other platforms (.e.g. Solaris) it doesn’t. Unless you know
which platforms your application will be running on, always explicitly set it to the blocking IO mode as in
the example above. Alternatively, you could query whether the socket is already set to a blocking IO mode
with help of the opt_get() method.

Now let’s look at the following two examples of connection handlers. The first using the connection
socket to read and write the data and the second using bucket brigades to accomplish the same and allow
for connection filters to do their work.

5.2.2.1 Socket-based Protocol Module

To demonstrate the workings of a protocol module, we’ll take a look at the MyApache::EchoSocket
module, which simply echoes the data read back to the client. In this module we will use the implementa-
tion that works directly with the connection socket and therefore bypasses connection filters if any.

A protocol handler is configured using the PerlProcessConnectionHandler directive and we will
use the Listen and <VirtualHost> directives to bind to the non-standard port 8010:

 Listen 8010
 <VirtualHost _default_:8010>
 PerlModule MyApache::EchoSocket
 PerlProcessConnectionHandler MyApache::EchoSocket
 </VirtualHost>

MyApache::EchoSocket is then enabled when starting Apache:

 panic% httpd

And we give it a whirl:

 panic% telnet localhost 8010
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello
 Hello

 fOo BaR
 fOo BaR

 Connection closed by foreign host.

13 Nov 200430

Philippe M. Chiasson5.2.2 PerlProcessConnectionHandler

Here is the code:

 file:MyApache/EchoSocket.pm

 package MyApache::EchoSocket;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Socket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’SO_NONBLOCK’;

 use constant BUFF_LEN => 1024;

 sub handler {
 my $c = shift;
 my $sock = $c->client_socket;

 # set the socket to the blocking mode
 $sock->opt_set(APR::SO_NONBLOCK => 0);

 while ($sock->recv(my $buff, BUFF_LEN)) {
 last if $buff =~ /^[\r\n]+$/;
 $sock->send($buff);
 }

 Apache::OK;
 }
 1;

The example handler starts with the standard package declaration and of course, use strict; . As with
all Perl*Handler s, the subroutine name defaults to handler. However, in the case of a protocol
handler, the first argument is not a request_rec , but a conn_rec blessed into the
Apache::Connection class. We have direct access to the client socket via Apache::Connec-
tion ’s client_socket method. This returns an object, blessed into the APR::Socket class. Before using
the socket, we make sure that it’s set to perform blocking IO, by using the APR::SO_NONBLOCK
constant, compiled earlier.

Inside the recv/send loop, the handler attempts to read BUFF_LEN bytes from the client socket into the
$buff buffer. The handler breaks the loop if nothing was read (EOF) or if the buffer contains nothing but
new line character(s), which is how we know to abort the connection in the interactive mode.

If the handler receives some data, it sends it unmodified back to the client with the
APR::Socket::send() method. When the loop is finished the handler returns Apache::OK , telling
Apache to terminate the connection. As mentioned earlier since this handler is working directly with the
connection socket, no filters can be applied.

3113 Nov 2004

5.2.2 PerlProcessConnectionHandlerProtocol Handlers

5.2.2.2 Bucket Brigades-based Protocol Module

Now let’s look at the same module, but this time implemented by manipulating bucket brigades, and
which runs its output through a connection output filter that turns all uppercase characters into their lower-
case equivalents.

The following configuration defines a virtual host listening on port 8011 and which enables the
MyApache::EchoBB connection handler, which will run its output through
MyApache::EchoBB::lowercase_filter filter:

 Listen 8011
 <VirtualHost _default_:8011>
 PerlModule MyApache::EchoBB
 PerlProcessConnectionHandler MyApache::EchoBB
 PerlOutputFilterHandler MyApache::EchoBB::lowercase_filter
 </VirtualHost>

As before we start the httpd server:

 panic% httpd

And try the new connection handler in action:

 panic% telnet localhost 8011
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello
 hello

 fOo BaR
 foo bar

 Connection closed by foreign host.

As you can see the response part this time was all in lower case, because of the output filter.

And here is the implementation of the connection and the filter handlers.

 file:MyApache/EchoBB.pm

 package MyApache::EchoBB;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Socket ();
 use APR::Bucket ();
 use APR::Brigade ();
 use APR::Error ();

 use APR::Const -compile => qw(SUCCESS EOF SO_NONBLOCK);
 use Apache::Const -compile => qw(OK MODE_GETLINE);

13 Nov 200432

Philippe M. Chiasson5.2.2 PerlProcessConnectionHandler

 sub handler {
 my $c = shift;

 $c->client_socket->opt_set(APR::SO_NONBLOCK => 0);

 my $bb_in = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $bb_out = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $ba = $c->bucket_alloc;

 while (1) {
 my $rc = $c->input_filters->get_brigade($bb_in,
 Apache::MODE_GETLINE);
 last if $rc == APR::EOF;
 die APR::Error::strerror($rc) unless $rc == APR::SUCCESS;

 while (!$bb_in->is_empty) {
 my $b = $bb_in->first;

 $b->remove;

 if ($b->is_eos) {
 $bb_out->insert_tail($b);
 last;
 }

 if ($b->read(my $data)) {
 last if $data =~ /^[\r\n]+$/;
 # could do some transformation on data here
 $b = APR::Bucket->new($ba, $data);
 }

 $bb_out->insert_tail($b);
 }

 my $fb = APR::Bucket::flush_create($c->bucket_alloc);
 $bb_out->insert_tail($fb);
 $c->output_filters->pass_brigade($bb_out);
 }

 $bb_in->destroy;
 $bb_out->destroy;

 Apache::OK;
 }

 use base qw(Apache::Filter);
 use constant BUFF_LEN => 1024;

 sub lowercase_filter : FilterConnectionHandler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $filter->print(lc $buffer);
 }

3313 Nov 2004

5.2.2 PerlProcessConnectionHandlerProtocol Handlers

 return Apache::OK;
 }

 1;

For the purpose of explaining how this connection handler works, we are going to simplify the handler.
The whole handler can be represented by the following pseudo-code:

 while ($bb_in = get_brigade()) {
 while ($b_in = $bb_in->get_bucket()) {
 $b_in->read(my $data);
 # do something with data
 $b_out = new_bucket($data);

 $bb_out->insert_tail($b_out);
 }
 $bb_out->insert_tail($flush_bucket);
 pass_brigade($bb_out);
 }

The handler receives the incoming data via bucket bridges, one at a time in a loop. It then process each
bridge, by retrieving the buckets contained in it, reading the data in, then creating new buckets using the
received data, and attaching them to the outgoing brigade. When all the buckets from the incoming bucket
brigade were transformed and attached to the outgoing bucket brigade, a flush bucket is created and added
as the last bucket, so when the outgoing bucket brigade is passed out to the outgoing connection filters, it
won’t be buffered but sent to the client right away.

It’s possible to make the flushing code simpler, by using a dedicated method fflush() that does just
that -- flushing of the bucket brigade. It replaces 3 lines of code:

 my $fb = APR::Bucket::flush_create($c->bucket_alloc);
 $bb_out->insert_tail($fb);
 $c->output_filters->pass_brigade($bb_out);

with just one line:

 $c->output_filters->fflush($bb_out);

If you look at the complete handler, the loop is terminated when one of the following conditions occurs: an
error happens, the end of stream status code (APR::EOF) has been received (no more input at the connec-
tion) or when the received data contains nothing but new line characters which we used to to tell the server
to terminate the connection.

Notice that this handler could be much simpler, since we don’t modify the data. We could simply pass the
whole brigade unmodified without even looking at the buckets. But from this example you can see how to
write a connection handler where you actually want to read and/or modify the data. To accomplish that
modification simply add a code that transforms the data which has been read from the bucket before it’s
inserted to the outgoing brigade.

13 Nov 200434

Philippe M. Chiasson5.2.2 PerlProcessConnectionHandler

We will skip the filter discussion here, since we are going to talk in depth about filters in the dedicated to
filters tutorial. But all you need to know at this stage is that the data sent from the connection handler is
filtered by the outgoing filter and which transforms it to be all lowercase.

And here is the simplified version of this handler, which doesn’t attempt to do any transformation, but
simply passes the data though:

 sub handler {
 my $c = shift;

 $c->client_socket->opt_set(APR::SO_NONBLOCK => 0);

 my $bb = APR::Brigade->new($c->pool, $c->bucket_alloc);

 while (1) {
 my $rc = $c->input_filters->get_brigade($bb,
 Apache::MODE_GETLINE);
 last if $rc == APR::EOF;
 die APR::Error::strerror($rc) unless $rc == APR::SUCCESS;
 $c->output_filters->fflush($bb);
 }

 $bb->destroy;

 Apache::OK;
 }

Since the simplified handler no longer has the condition:

 $last++ if $data =~ /^[\r\n]+$/;

which was used to know when to break from the external while(1) loop, it will not work in the interac-
tive mode, because when telnet is used we always end the line with /[\r\n]/ , which will always send
data back to the protocol handler and the condition:

 last if $bb->is_empty;

will never be true. However, this latter version works fine when the client is a script and when it stops
sending data, our shorter handler breaks out of the loop.

So let’s do one more tweak and make the last version work in the interactive telnet mode without manipu-
lating each bucket separately. This time we will use flatten() to slurp all the data from all the buckets,
which saves us the explicit loop over the buckets in the brigade. The handler now becomes:

 sub handler {
 my $c = shift;

 $c->client_socket->opt_set(APR::SO_NONBLOCK => 0);

 my $bb = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $ba = $c->bucket_alloc;

 while (1) {
 my $rc = $c->input_filters->get_brigade($bb,

3513 Nov 2004

5.2.2 PerlProcessConnectionHandlerProtocol Handlers

 Apache::MODE_GETLINE);
 last if $rc == APR::EOF;
 die APR::Error::strerror($rc) unless $rc == APR::SUCCESS;

 next unless $bb->flatten(my $data);
 $bb->cleanup;
 last if $data =~ /^[\r\n]+$/;

 # could transform data here
 my $b = APR::Bucket->new($ba, $data);
 $bb->insert_tail($b);

 $c->output_filters->fflush($bb);
 }

 $bb->destroy;

 Apache::OK;
 }

Notice, that once we slurped the data in the buckets, we had to strip the brigade of its buckets, since we
re-used the same brigade to send the data out. We used cleanup() to get rid of the buckets.

13 Nov 200436

Philippe M. Chiasson5.2.2 PerlProcessConnectionHandler

6 Input and Output Filters

3713 Nov 2004

6 Input and Output FiltersInput and Output Filters

6.1 Description
This chapter discusses mod_perl’s input and output filter handlers.

6.2 Your First Filter
You certainly already know how filters work. That’s because you encounter filters so often in real life.
There are many places in our lives where filters are used. The purpose of all filters is to apply some trans-
formation to what’s coming into the filter, letting something different out of the filter. Certainly in some
cases it’s possible to modify the source itself, but that makes things unflexible, and but most of the time
we have no control over the source. The advantage of using filters to modify something is that they can be
replaced when requirements change Filters also can be stacked, which allows us to make each filter do
simple transformations. For example by combining several different filters, we can apply multiple trans-
formations. In certain situations combining several filters of the same kind let’s us achieve a better quality
output.

The mod_perl filters are not any different, they receive some data, modify it and send it out. In the case of
filtering the output of the response handler, we could certainly change the response handler’s logic to do
something different, since we control the response handler. But this may make the code unnecessary
complex. If we can apply transformations to the response handler’s output, it certainly gives us more flexi-
bility and simplifies things. For example if a response needs to be compressed before sent out, it’d be very
inconvenient and inefficient to code in the response handler itself. Using a filter for that purpose is a
perfect solution. Similarly, in certain cases, using an input filter to transform the incoming request data is
the most wise solution. Think of the same example of having the incoming data coming compressed.

Just like with real life filters, you can pipe several filters to modify each other’s output. You can also
customize a selection of different filters at run time.

Without much further ado, let’s write a simple but useful obfuscation filter for our HTML documents.

We are going to use a very simple obfuscation -- turn an HTML document into a one liner, which will
make it harder to read its source without a special processing. To accomplish that we are going to remove
characters \012 (\n) and \015 (\r), which depending on the platform alone or as a combination represent
the end of line and a carriage return.

And here is the filter handler code:

 #file:MyApache/FilterObfuscate.pm
 #--------------------------------
 package MyApache::FilterObfuscate;

 use strict;
 use warnings;

 use Apache::Filter ();
 use Apache::RequestRec ();
 use APR::Table ();

13 Nov 200438

Philippe M. Chiasson6.1 Description

 use Apache::Const -compile => qw(OK);

 use constant BUFF_LEN => 1024;

 sub handler {
 my $f = shift;

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

 while ($f->read(my $buffer, BUFF_LEN)) {
 $buffer =~ s/[\r\n]//g;
 $f->print($buffer);
 }

 return Apache::OK;
 }
 1;

Next we configure Apache to apply the MyApache::FilterObfuscate filter to all requests that get
mapped to files with an ".html" extension:

 <Files ~ "\.html">
 PerlOutputFilterHandler MyApache::FilterObfuscate
 </Files>

Filter handlers are similar to HTTP handlers, they are expected to return Apache::OK or
Apache::DECLINED , but instead of receiving $r (the request object) as the first argument, they receive
$f (the filter object).

The filter starts by unsetting of the Content-Length response header, because it modifies the length of
the response body (shrinks it). If the response handler had set the Content-Length header and the
filter hasn’t unset it, the client may have problems receiving the response since it’d expect more data than
it was sent.

The core of this filter is a read-modify-print expression in a while loop. The logic is very simple: read at
most BUFF_LEN characters of data into $buffer , apply the regex to remove any occurences of \n and
\r in it, and print the resulting data out. The input data may come from a response handler, or from an
upstream filter. The output data goes to the next filter in the output chain. Even though in this example we
haven’t configured any more filters, internally Apache by itself uses several core filters to manipulate the
data and send it out to the client.

As we are going to explain in great detail in the next sections, the same filter may be called many times
during a single request, every time receiving a chunk of data. For example if the POSTed request data is
64k long, an input filter could be invoked 8 times, each time receiving 8k of data. The same may happen
during response phase, where an upstream filter may split 64k output in 8 8k chunks. The while loop that
we just saw is going to read each of these 8k in 8 calls, since it requests 1k on every read() call.

3913 Nov 2004

6.2 Your First FilterInput and Output Filters

Since it’s enough to unset the Content-Length header when the filter is called the first time, we need
to have some flag telling us whether we have done the job. The method ctx() provides this functionality:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

the unset() call will be made only on the first filter call for each request. Of course you can store any
kind of a Perl data structure in $f->ctx and retrieve it later in subsequent filter invocations of the same
request. We will show plenty of examples using this method in the following sections.

Of course the MyApache::FilterObfuscate filter logic should take into account situations where
removing new line characters will break the correct rendering, as is the case if there are multi-line
<pre> ...</pre> entries, but since it escalates the complexity of the filter, we will disregard this require-
ment for now.

A positive side effect of this obfuscation algorithm is in shortening the amount of the data sent to the
client. If you want to look at the production ready implementation, which takes into account the HTML
markup specifics, the Apache::Clean module, available from CPAN, does just that.

mod_perl I/O filtering follows the Perl’s principle of making simple things easy and difficult things possi-
ble. You have seen that it’s trivial to write simple filters. As you read through this tutorial you will see that
much more difficult things are possible, even though a more elaborated code will be needed.

6.3 I/O Filtering Concepts
Before introducing the APIs, mod_perl provides for Apache Filtering, there are several important concepts
to understand.

6.3.1 Two Methods for Manipulating Data

Apache 2.0 considers all incoming and outgoing data as chunks of information, disregarding their kind and
source or storage methods. These data chunks are stored in buckets, which form bucket brigades. Input and
output filters massage the data in bucket brigades. Response and protocol handlers also receive and send
data using bucket brigades, though in most cases this is hidden behind wrappers, such as read() and
print() .

mod_perl 2.0 filters can directly manipulate the bucket brigades or use the simplified streaming interface
where the filter object acts similar to a filehandle, which can be read from and printed to.

Even though you don’t use bucket brigades directly when you use the streaming filter interface (which
works on bucket brigades behind the scenes), it’s still important to understand bucket brigades. For
example you need to know that an output filter will be invoked as many times as the number of bucket
brigades sent from an upstream filter or a content handler. Or you need to know that the end of stream
indicator (EOS) is sometimes sent in a separate bucket brigade, so it shouldn’t be a surprise that the filter
was invoked even though no real data went through. As we delve into the filter details you will see that
understanding bucket brigades, will help to understand how filters work.

13 Nov 200440

Philippe M. Chiasson6.3 I/O Filtering Concepts

Moreover you will need to understand bucket brigades if you plan to implement protocol modules.

6.3.2 HTTP Request Versus Connection Filters

HTTP request filters are applied when Apache serves an HTTP request.

HTTP request input filters get invoked on the body of the HTTP request only if the body is consumed by
the content handler. HTTP request headers are not passed through the HTTP request input filters.

HTTP response output filters get invoked on the body of the HTTP response if the content handler has
generated one. HTTP response headers are not passed through the HTTP response output filters.

Connection level filters are applied at the connection level.

A connection may be configured to serve one or more HTTP requests, or handle other protocols. Connec-
tion filters see all the incoming and outgoing data. If an HTTP request is served, connection filters can
modify the HTTP headers and the body of request and response. If a different protocol is served over
connection (e.g. IMAP), the data could have a completely different pattern, than the HTTP protocol
(headers + body).

Apache supports several other filter types, which mod_perl 2.0 may support in the future.

6.3.3 Multiple Invocations of Filter Handlers

Unlike other Apache handlers, filter handlers may get invoked more than once during the same request.
Filters get invoked as many times as the number of bucket brigades sent from an upstream filter or a
content provider.

For example if a content generation handler sends a string, and then forces a flush, following by more
data:

 # assuming buffered STDOUT ($|==0)
 $r->print("foo");
 $r->rflush;
 $r->print("bar");

Apache will generate one bucket brigade with two buckets (there are several types of buckets which
contain data, one of them is transient):

 bucket type data

 1st transient foo
 2nd flush

and send it to the filter chain. Then assuming that no more data was sent after print("bar") , it will
create a last bucket brigade containing data:

4113 Nov 2004

6.3.2 HTTP Request Versus Connection FiltersInput and Output Filters

 bucket type data

 1st transient bar

and send it to the filter chain. Finally it’ll send yet another bucket brigade with the EOS bucket indicating
that there will be no more data sent:

 bucket type data

 1st eos

The EOS bucket may be attached to the last bucket brigade with the data, rather than be sent in its own
brigade, therefore filters should never make an assumption that the EOS bucket is arriving alone in a
bucket brigade.

EOS buckets are valid for Request filters. For Connection filters, you will get one only in the response
filters only at the end of the connection. See the trick how to workaround this in
Apache::Filter::HTTPHeadersFixup . Need to mention that in a few other places in this doc.

Notice that the EOS bucket may come attached to the last bucket brigade with data, instead of coming in
its its own bucket brigade. Filters should never make an assumption that the EOS bucket is arriving alone
in a bucket brigade. Therefore the first output filter will be invoked two or three times (three times if EOS
is coming in its own brigade), depending on the number of bucket brigades sent by the response handler.

A user may install an upstream filter, and that filter may decide to insert extra bucket brigades or collect
all the data in all bucket brigades passing through it and send it all down in one brigade. What’s important
to remember is when coding a filter, one should never assume that the filter is always going to be invoked
once, or a fixed number of times. Neither one can make assumptions on the way the data is going to come
in. Therefore a typical filter handler may need to split its logic in three parts.

Jumping ahead we will show some pseudo-code that represents all three parts. This is how a typical
stream-oriented filter handler looks like:

 sub handler {
 my $f = shift;

 # runs on first invocation
 unless ($f->ctx) {
 init($f);
 $f->ctx(1);
 }

 # runs on all invocations
 process($f);

 # runs on the last invocation
 if ($f->seen_eos) {
 finalize($f);
 }

 return Apache::OK;

13 Nov 200442

Philippe M. Chiasson6.3.3 Multiple Invocations of Filter Handlers

 }
 sub init { ... }
 sub process { ... }
 sub finalize { ... }

The following diagram depicts all three parts:

Let’s explain each part using this pseudo-filter.

1. Initialization

During the initialization, the filter runs all the code that should be performed only once across multi-
ple invocations of the filter (this is during a single request). The filter context is used to accomplish
that task. For each new request the filter context is created before the filter is called for the first time
and its destroyed at the end of the request.

 unless ($f->ctx) {
 init($f);
 $f->ctx(1);
 }

When the filter is invoked for the first time $f->ctx returns undef and the custom function init()
is called. This function could, for example, retrieve some configuration data, set in httpd.conf or
initialize some datastructure to its default value.

4313 Nov 2004

6.3.3 Multiple Invocations of Filter HandlersInput and Output Filters

To make sure that init() won’t be called on the following invocations, we must set the filter context
before the first invocation is completed:

 $f->ctx(1);

In practice, the context is not just served as a flag, but used to store real data. For example the follow-
ing filter handler counts the number of times it was invoked during a single request:

 sub handler {
 my $f = shift;

 my $ctx = $f->ctx;
 $ctx->{invoked}++;
 $f->ctx($ctx);
 warn "filter was invoked $ctx->{invoked} times\n";

 return Apache::DECLINED;
 }

Since this filter handler doesn’t consume the data from the upstream filter, it’s important that this
handler returns Apache::DECLINED , in which case mod_perl passes the current bucket brigade to
the next filter. If this handler returns Apache::OK , the data will be simply lost. And if that data
included a special EOS token, this may wreck havoc.

Unsetting the Content-Length header for filters that modify the response body length is a good
example of the code to be used in the initialization phase:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

We will see more of initialization examples later in this chapter.

2. Processing

The next part:

 process($f);

is unconditionally invoked on every filter invocation. That’s where the incoming data is read, modi-
fied and sent out to the next filter in the filter chain. Here is an example that lowers the case of the
characters passing through:

 use constant READ_SIZE => 1024;
 sub process {
 my $f = shift;
 while ($f->read(my $data, READ_SIZE)) {
 $f->print(lc $data);
 }
 }

13 Nov 200444

Philippe M. Chiasson6.3.3 Multiple Invocations of Filter Handlers

Here the filter operates only on a single bucket brigade. Since it manipulates every character sepa-
rately the logic is really simple.

In more complicated filters the filters may need to buffer data first before the transformation can be
applied. For example if the filter operates on html tokens (e.g., ’’), it’s
possible that one brigade will include the beginning of the token (’<img ’) and the remainder of the
token (’src="me.jpg">’) will come in the next bucket brigade (on the next filter invocation). In
certain cases it may involve more than two bucket brigades to get the whole token. In such a case the filter
will have to store the remainder of unprocessed data in the filter context and then reuse it on the next
invocation. Another good example is a filter that performs data compression (compression is usually
effective only when applied to relatively big chunks of data), so if a single bucket brigade doesn’t
contain enough data, the filter may need to buffer the data in the filter context till it collects enough of it.

We will see the implementation examples in this chapter.

3. Finalization

Finally, some filters need to know when they are invoked for the last time, in order to perform
various cleanups and/or flush any remaining data. As mentioned earlier, Apache indicates this event
by a special end of stream "token", represented by a bucket of type EOS. If the filter is using the
streaming interface, rather than manipulating the bucket brigades directly, and it was calling read() in
a while loop, it can check whether this is the last time it’s invoked, using the $f->seen_eos
method:

 if ($f->seen_eos) {
 finalize($f);
 }

This check should be done at the end of the filter handler, because sometimes the EOS "token" comes
attached to the tail of data (the last invocation gets both the data and EOS) and sometimes it comes all
alone (the last invocation gets only EOS). So if this test is performed at the beginning of the handler
and the EOS bucket was sent in together with the data, the EOS event may be missed and filter won’t
function properly.

Jumping ahead, filters, directly manipulating bucket brigades, have to look for a bucket whose type is
EOS to accomplish this. We will see examples later in the chapter.

Some filters may need to deploy all three parts of the described logic, others will need to do only initializa-
tion and processing, or processing and finalization, while the simplest filters might perform only the
normal processing (as we saw in the example of the filter handler that lowers the case of the characters
going through it).

6.3.4 Blocking Calls

All filters (excluding the core filter that reads from the network and the core filter that writes to it) block at
least once when invoked. Depending on whether this is an input or an output filter, the blocking happens
when the bucket brigade is requested from the upstream filter or when the bucket brigade is passed to the
downstream filter.

4513 Nov 2004

6.3.4 Blocking CallsInput and Output Filters

First of all, the input and output filters differ in the ways they acquire the bucket brigades (which includes
the data that they filter). Even though when a streaming API is used the difference can’t be seen, it’s
important to understand how things work underneath. Therefore we are going to show examples of trans-
parent filters, which pass data through them unmodified. Instead of reading the data in and printing it out
the bucket brigades are now passed as is.

Here is a code for a transparent input filter:

 #file:MyApache/FilterTransparent.pm (first part)
 #---
 package MyApache::FilterTransparent;

 use Apache::Const -compile => qw(OK);
 use APR::Const -compile => ’:common’;

 sub in {
 my($f, $bb, $mode, $block, $readbytes) = @_;

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 return Apache::OK;
 }

When the input filter in() is invoked, it first asks the upstream filter for the next bucket brigade (using the
get_brigade() call). That upstream filter is in turn going to ask for the bucket brigade from the next
upstream filter in chain, etc., till the last filter (called core_in), that reads from the network is reached.
The core_in filter reads, using a socket, a portion of the incoming data from the network, processes it
and sends it to its downstream filter, which will process the data and send it to its downstream filter, etc.,
till it reaches the very first filter who has asked for the data. (In reality some other handler triggers the
request for the bucket brigade, e.g., an HTTP response handler, or a protocol module, but for our discus-
sion it’s good enough to assume that it’s the first filter that issues the get_brigade() call.)

The following diagram depicts a typical input filters chain data flow in addition to the program control
flow.

13 Nov 200446

Philippe M. Chiasson6.3.4 Blocking Calls

The black- and white-headed arrows show when the control is switched from one filter to another. In addi-
tion the black-headed arrows show the actual data flow. The diagram includes some pseudo-code, both for
in Perl for the mod_perl filters and in C for the internal Apache filters. You don’t have to understand C to
understand this diagram. What’s important to understand is that when input filters are invoked they first
call each other via the get_brigade() call and then block (notice the brick wall on the diagram),
waiting for the call to return. When this call returns all upstream filters have already completed finishing
their filtering task.

As mentioned earlier, the streaming interface hides these details, however the first $f->read() call will
block, as underneath it performs the get_brigade() call.

The diagram shows a part of the actual input filter chain for an HTTP request, the ... shows that there
are more filters in between the mod_perl filter and http_in .

Now let’s look at what happens in the output filters chain. Here the first filter acquires the bucket brigades
containing the response data, from the content handler (or another protocol handler if we aren’t talking
HTTP), it then may apply some modification and pass the data to the next filter (using the
pass_brigade() call), which in turn applies its modifications and sends the bucket brigade to the next
filter, etc., all the way down to the last filter (called core) which writes the data to the network, via the
socket the client is listening to. Even though the output filters don’t have to wait to acquire the bucket
brigade (since the upstream filter passes it to them as an argument), they still block in a similar fashion to
input filters, since they have to wait for the pass_brigade() call to return.

Here is an example of a transparent output filter:

4713 Nov 2004

6.3.4 Blocking CallsInput and Output Filters

 #file:MyApache/FilterTransparent.pm (continued)
 #---
 sub out {
 my($f, $bb) = @_;

 my $rv = $f->next->pass_brigade($bb);
 return $rv unless $rv == APR::SUCCESS;

 return Apache::OK;
 }
 1;

The out() filter passes $bb to the downstream filter unmodified and if you add debug prints before and
after the pass_brigade() call and configure the same filter twice, the debug print will show the block-
ing call.

The following diagram depicts a typical output filters chain data flow in addition to the program control
flow:

Similar to the input filters chain diagram, the arrows show the program control flow and in addition the
black-headed arrows show the data flow. Again, it uses a Perl pseudo-code for the mod_perl filter and C
pseudo-code for the Apache filters, similarly the brick walls represent the waiting. And again, the diagram
shows a part of the real HTTP response filters chain, where ... stands for the omitted filters.

6.4 mod_perl Filters Declaration and Configuration
Now let’s see how mod_perl filters are declared and configured.

13 Nov 200448

Philippe M. Chiasson6.4 mod_perl Filters Declaration and Configuration

6.4.1 Filter Priority Types

When Apache filters are configured they are inserted into the filters chain according to their priority/type.
In most cases when using one or two filters things will just work, however if you find that the order of
filter invocation is wrong, the filter priority type should be consulted. Unfortunately this information is
available only by consulting the source code, unless it’s documented in the module man pages. Numerical
definitions of priority types, such as AP_FTYPE_CONTENT_SET, AP_FTYPE_RESOURCE, can be
found in include/util_filter.h.

As of this writing Apache comes with two core filters: DEFLATE and INCLUDES. For example in the
following configuration:

 SetOutputFilter DEFLATE
 SetOutputFilter INCLUDES

the DEFLATE filter will be inserted in the filters chain after the INCLUDES filter, even though it was
configured before it. This is because the DEFLATE filter is of type AP_FTYPE_CONTENT_SET (20),
whereas the INCLUDES filter is of type AP_FTYPE_RESOURCE (10).

As of this writing mod_perl provides two kind of filters with fixed priority type:

 Handler Priority Value

 FilterRequestHandler AP_FTYPE_RESOURCE 10
 FilterConnectionHandler AP_FTYPE_PROTOCOL 30

Therefore FilterRequestHandler filters (10) will be always invoked before the DEFLATE filter
(20), whereas FilterConnectionHandler filters (30) after it. The INCLUDES filter (10) has the
same priority as FilterRequestHandler filters (10), and therefore it’ll be inserted according to the
configuration order, when PerlSetOutputFilter or PerlSetInputFilter is used.

6.4.2 PerlInputFilterHandler

The PerlInputFilterHandler handler registers a filter for input filtering.

This handler is of type VOID.

The handler’s configuration scope is DIR

The following sections include several examples that use the PerlInputFilterHandler handler.

6.4.3 PerlOutputFilterHandler

The PerlOutputFilterHandler handler registers and configures output filters.

This handler is of type VOID.

4913 Nov 2004

6.4.1 Filter Priority TypesInput and Output Filters

The handler’s configuration scope is DIR

The following sections include several examples that use the PerlOutputFilterHandler handler.

6.4.4 PerlSetInputFilter

The SetInputFilter directive, documented at
http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter sets the filter or filters which will process
client requests and POST input when they are received by the server (in addition to any filters configured
earlier).

To mix mod_perl and non-mod_perl input filters of the same priority nothing special should be done. For
example if we have an imaginary Apache filter FILTER_FOO and mod_perl filter
MyApache::FilterInputFoo , this configuration:

 SetInputFilter FILTER_FOO
 PerlInputFilterHandler MyApache::FilterInputFoo

will add both filters, however the order of their invocation might be not the one that you’ve expected. To
make the invocation order the same as the insertion order replace SetInputFilter with PerlSet-
InputFilter , like so:

 PerlSetInputFilter FILTER_FOO
 PerlInputFilterHandler MyApache::FilterInputFoo

now FILTER_FOO filter will be always executed before the MyApache::FilterInputFoo filter,
since it was configured before MyApache::FilterInputFoo (i.e., it’ll apply its transformations on
the incoming data last). Here is a diagram input filters chain and the data flow from the network to the
response handler for the presented configuration:

 response handler
 /\
 ||
 FILTER_FOO
 /\
 ||
 MyApache::FilterInputFoo
 /\
 ||
 core input filters
 /\
 ||
 network

As explained in the section Filter Priority Types this directive won’t affect filters of different priority. For
example assuming that MyApache::FilterInputFoo is a FilterRequestHandler filter, the
configurations:

 PerlInputFilterHandler MyApache::FilterInputFoo
 PerlSetInputFilter DEFLATE

13 Nov 200450

Philippe M. Chiasson6.4.4 PerlSetInputFilter

http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter

and

 PerlSetInputFilter DEFLATE
 PerlInputFilterHandler MyApache::FilterInputFoo

are equivalent, because mod_deflate’s DEFLATE filter has a higher priority than MyApache::Filter-
InputFoo , thefore it’ll always be inserted into the filter chain after MyApache::FilterInputFoo ,
(i.e. the DEFLATE filter will apply its transformations on the incoming data first). Here is a diagram input
filters chain and the data flow from the network to the response handler for the presented configuration:

 response handler
 /\
 ||
 MyApache::FilterInputFoo
 /\
 ||
 DEFLATE
 /\
 ||
 core input filters
 /\
 ||
 network

SetInputFilter ’s ; semantics are supported as well. For example, in the following configuration:

 PerlInputFilterHandler MyApache::FilterInputFoo
 PerlSetInputFilter FILTER_FOO;FILTER_BAR

MyApache::FilterOutputFoo will be executed first, followed by FILTER_FOO and finally by
FILTER_BAR (again, assuming that all three filters have the same priority).

The PerlSetInputFilter directives’s configuration scope is DIR.

6.4.5 PerlSetOutputFilter

The SetOutputFilter directive, documented at
http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter sets the filters which will process
responses from the server before they are sent to the client (in addition to any filters configured earlier).

To mix mod_perl and non-mod_perl output filters of the same priority nothing special should be done.
This configuration:

 SetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

will add all two filters to the filter chain, however the order of their invocation might be not the one that
you’ve expected. To preserve the insertion order replace SetOutputFilter with PerlSetOutput-
Filter , like so:

5113 Nov 2004

6.4.5 PerlSetOutputFilterInput and Output Filters

http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter

 PerlSetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

now mod_include’s INCLUDES filter will be always executed before the MyApache::FilterOut-
putFoo filter. Here is a diagram input filters chain and the data flow from the response handler to the
network for the presented configuration:

 response handler
 ||
 \/
 INCLUDES
 ||
 \/
 MyApache::FilterOutputFoo
 ||
 \/
 core output filters
 ||
 \/
 network

SetOutputFilter ’s ; semantics are supported as well. For example, in the following configuration:

 PerlOutputFilterHandler MyApache::FilterOutputFoo
 PerlSetOutputFilter INCLUDES;FILTER_FOO

MyApache::FilterOutputFoo will be executed first, followed by INCLUDES and finally by
FILTER_FOO (again, assuming that all three filters have the same priority).

Just as explained in the PerlSetInputFilter section, if filters have different priorities, the insertion
order might be different. For example in the following configuration:

 PerlSetOutputFilter DEFLATE
 PerlSetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

mod_include’s INCLUDES filter will be always executed before the MyApache::FilterOutputFoo
filter. The latter will be followed by mod_deflate’s DEFLATE filter, even though it was configured before
the other two filters. This is because it has a higher priority. And the corresponding diagram looks like so:

 response handler
 ||
 \/
 INCLUDES
 ||
 \/
 MyApache::FilterOutputFoo
 ||
 \/
 DEFLATE
 ||
 \/

13 Nov 200452

Philippe M. Chiasson6.4.5 PerlSetOutputFilter

 core output filters
 ||
 \/
 network

The PerlSetOutputFilter directives’s configuration scope is DIR.

6.4.6 HTTP Request vs. Connection Filters

mod_perl 2.0 supports connection and HTTP request filtering. mod_perl filter handlers specify the type of
the filter using the method attributes.

HTTP request filter handlers are declared using the FilterRequestHandler attribute. Consider the
following request input and output filters skeleton:

 package MyApache::FilterRequestFoo;
 use base qw(Apache::Filter);

 sub input : FilterRequestHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 #...
 }

 sub output : FilterRequestHandler {
 my($f, $bb) = @_;
 #...
 }

 1;

If the attribute is not specified, the default FilterRequestHandler attribute is assumed. Filters spec-
ifying subroutine attributes must subclass Apache::Filter , others only need to:

 use Apache::Filter ();

The request filters are usually configured in the <Location> or equivalent sections:

 PerlModule MyApache::FilterRequestFoo
 PerlModule MyApache::NiceResponse
 <Location /filter_foo>
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 PerlInputFilterHandler MyApache::FilterRequestFoo::input
 PerlOutputFilterHandler MyApache::FilterRequestFoo::output
 </Location>

Now we have the request input and output filters configured.

The connection filter handler uses the FilterConnectionHandler attribute. Here is a similar
example for the connection input and output filters.

5313 Nov 2004

6.4.6 HTTP Request vs. Connection FiltersInput and Output Filters

 package MyApache::FilterConnectionBar;
 use base qw(Apache::Filter);

 sub input : FilterConnectionHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 #...
 }

 sub output : FilterConnectionHandler {
 my($f, $bb) = @_;
 #...
 }

 1;

This time the configuration must be done outside the <Location> or equivalent sections, usually within
the <VirtualHost> or the global server configuration:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlModule MyApache::FilterConnectionBar
 PerlModule MyApache::NiceResponse

 PerlInputFilterHandler MyApache::FilterConnectionBar::input
 PerlOutputFilterHandler MyApache::FilterConnectionBar::output
 <Location />
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 </Location>

 </VirtualHost>

This accomplishes the configuration of the connection input and output filters.

Notice that for HTTP requests the only difference between connection filters and request filters is that the
former see everything: the headers and the body, whereas the latter see only the body.

mod_perl provides two interfaces to filtering: a direct bucket brigades manipulation interface and a
simpler, stream-oriented interface. The examples in the following sections will help you to understand the
difference between the two interfaces.

6.4.7 Filter Initialization Phase

Like in any cool application, there is a hidden door, that let’s you do cool things. mod_perl is not an
exception.

where you can plug yet another callback. This init callback runs immediately after the filter handler is
inserted into the filter chain, before it was invoked for the first time. Here is a skeleton of an init handler:

13 Nov 200454

Philippe M. Chiasson6.4.7 Filter Initialization Phase

 sub init : FilterInitHandler {
 my $f = shift;
 #...
 return Apache::OK;
 }

The attribute FilterInitHandler marks the Perl function suitable to be used as a filter initialization
callback, which is called immediately after a filter is inserted to the filter chain and before it’s actually
called.

For example you may decide to dynamically remove a filter before it had a chance to run, if some condi-
tion is true:

 sub init : FilterInitHandler {
 my $f = shift;
 $f->remove() if should_remove_filter();
 return Apache::OK;
 }

Not all Apache::Filter methods can be used in the init handler, because it’s not a filter. Hence you
can use methods that operate on the filter itself, such as remove() and ctx() or retrieve request infor-
mation, such as r() and c() . But not methods that operate on data, such as read() and print() .

In order to hook an init filter handler, the real filter has to assign this callback using the Filter-
HasInitHandler which accepts a reference to the callback function, similar to push_handlers() .
The used callback function has to have the FilterInitHandler attribute. For example:

 package MyApache::FilterBar;
 use base qw(Apache::Filter);
 sub init : FilterInitHandler { ... }
 sub filter : FilterRequestHandler FilterHasInitHandler(\&init) {
 my ($f, $bb) = @_;
 # ...
 return Apache::OK;
 }

While attributes are parsed during the code compilation (it’s really a sort of source filter), the argument to
the FilterHasInitHandler() attribute is compiled at a later stage once the module is compiled.

The argument to FilterHasInitHandler() can be any Perl code which when eval() ’ed returns a
code reference. For example:

 package MyApache::OtherFilter;
 use base qw(Apache::Filter);
 sub init : FilterInitHandler { ... }

 package MyApache::FilterBar;
 use MyApache::OtherFilter;
 use base qw(Apache::Filter);
 sub get_pre_handler { \&MyApache::OtherFilter::init }
 sub filter : FilterHasInitHandler(get_pre_handler()) { ... }

5513 Nov 2004

6.4.7 Filter Initialization PhaseInput and Output Filters

Here the MyApache::FilterBar::filter handler is configured to run the MyApache::Other-
Filter::init init handler.

Notice that the argument to FilterHasInitHandler() is always eval() ’ed in the package of the
real filter handler (not the init handler). So the above code leads to the following evaluation:

 $init_sub = eval "package MyApache::FilterBar; get_pre_handler()";

though, this is done in C, using the eval_pv() C call.

META: currently only one initialization callback can be registered per filter handler. If the need to register
more than one arises it should be very easy to extend the functionality.

6.5 All-in-One Filter
Before we delve into the details of how to write filters that do something with the data, lets first write a
simple filter that does nothing but snooping on the data that goes through it. We are going to develop the
MyApache::FilterSnoop handler which can snoop on request and connection filters, in input and
output modes.

But first let’s develop a simple response handler that simply dumps the request’s args and content as
strings:

 file:MyApache/Dump.pm

 package MyApache::Dump;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => qw(OK M_POST);

 sub handler {
 my $r = shift;
 $r->content_type(’text/plain’);

 $r->print("args:\n", $r->args, "\n");

 if ($r->method_number == Apache::M_POST) {
 my $data = content($r);
 $r->print("content:\n$data\n");
 }

 return Apache::OK;
 }

 use Apache::Const -compile => qw(MODE_READBYTES);
 use APR::Const -compile => qw(SUCCESS BLOCK_READ);

13 Nov 200456

Philippe M. Chiasson6.5 All-in-One Filter

 use constant IOBUFSIZE => 8192;

 sub content {
 my $r = shift;

 my $bb = APR::Brigade->new($r->pool, $r->connection->bucket_alloc);

 my $data = ’’;
 my $seen_eos = 0;

 do {
 $r->input_filters->get_brigade($bb,
 Apache::MODE_READBYTES, APR::BLOCK_READ, IOBUFSIZE);

 while (!$bb->is_empty) {
 my $b = $bb->first;
 $b->remove;

 if ($b->is_eos) {
 $seen_eos++;
 last;
 }

 $b->read(my $buf);
 $data .= $buf;
 }

 } while (!$seen_eos);

 $bb->destroy;

 return $data;
 }

 1;

which is configured as:

 PerlModule MyApache::Dump
 <Location /dump>
 SetHandler modperl
 PerlResponseHandler MyApache::Dump
 </Location>

If we issue the following request:

 % echo "mod_perl rules" | POST ’http://localhost:8002/dump?foo=1&bar=2’

the response will be:

 args:
 foo=1&bar=2
 content:
 mod_perl rules

5713 Nov 2004

6.5 All-in-One FilterInput and Output Filters

As you can see it simply dumped the query string and the posted data.

Now let’s write the snooping filter:

 file:MyApache/FilterSnoop.pm

 package MyApache::FilterSnoop;

 use strict;
 use warnings;

 use base qw(Apache::Filter);
 use Apache::FilterRec ();
 use APR::Brigade ();
 use APR::Bucket ();
 use APR::BucketType ();

 use Apache::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’:common’;

 sub connection : FilterConnectionHandler { snoop("connection", @_) }
 sub request : FilterRequestHandler { snoop("request", @_) }

 sub snoop {
 my $type = shift;
 my($f, $bb, $mode, $block, $readbytes) = @_; # filter args

 # $mode, $block, $readbytes are passed only for input filters
 my $stream = defined $mode ? "input" : "output";

 # read the data and pass-through the bucket brigades unchanged
 if (defined $mode) {
 # input filter
 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;
 bb_dump($type, $stream, $bb);
 }
 else {
 # output filter
 bb_dump($type, $stream, $bb);
 my $rv = $f->next->pass_brigade($bb);
 return $rv unless $rv == APR::SUCCESS;
 }

 return Apache::OK;
 }

 sub bb_dump {
 my($type, $stream, $bb) = @_;

 my @data;
 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 $b->read(my $bdata);
 push @data, $b->type->name, $bdata;
 }

 # send the sniffed info to STDERR so not to interfere with normal

13 Nov 200458

Philippe M. Chiasson6.5 All-in-One Filter

 # output
 my $direction = $stream eq ’output’ ? ">>>" : "<<<";
 print STDERR "\n$direction $type $stream filter\n";

 my $c = 1;
 while (my($btype, $data) = splice @data, 0, 2) {
 print STDERR " o bucket $c: $btype\n";
 print STDERR "[$data]\n";
 $c++;
 }
 }
 1;

This package provides two filter handlers, one for connection and another for request filtering:

 sub connection : FilterConnectionHandler { snoop("connection", @_) }
 sub request : FilterRequestHandler { snoop("request", @_) }

Both handlers forward their arguments to the snoop() function that does the real job. We needed to add
these two subroutines in order to assign the two different attributes. Plus the functions pass the filter type
to snoop() as the first argument, which gets shifted off @_ and the rest of the @_ are the arguments that
were originally passed to the filter handler.

It’s easy to know whether a filter handler is running in the input or the output mode. The arguments $f
and $bb are always passed, whereas the arguments $mode, $block , and $readbytes are passed only
to input filter handlers.

If we are in the input mode, in the same call we retrieve the bucket brigade from the previous filter on the
input filters stack and immediately link it to the $bb variable which makes the bucket brigade available to
the next input filter when the filter handler returns. If we forget to perform this linking our filter will
become a black hole in which data simply disappears. Next we call bb_dump() which dumps the type of
the filter and the contents of the bucket brigade to STDERR, without influencing the normal data flow.

If we are in the output mode, the $bb variable already points to the current bucket brigade. Therefore we
can read the contents of the brigade right away. After that we pass the brigade to the next filter.

Let’s snoop on connection and request filter levels in both directions by applying the following configura-
tion:

 Listen 8008
 <VirtualHost _default_:8008>
 PerlModule MyApache::FilterSnoop
 PerlModule MyApache::Dump

 # Connection filters
 PerlInputFilterHandler MyApache::FilterSnoop::connection
 PerlOutputFilterHandler MyApache::FilterSnoop::connection

 <Location /dump>
 SetHandler modperl
 PerlResponseHandler MyApache::Dump
 # Request filters
 PerlInputFilterHandler MyApache::FilterSnoop::request

5913 Nov 2004

6.5 All-in-One FilterInput and Output Filters

 PerlOutputFilterHandler MyApache::FilterSnoop::request
 </Location>

 </VirtualHost>

Notice that we use a virtual host because we want to install connection filters.

If we issue the following request:

 % echo "mod_perl rules" | POST ’http://localhost:8008/dump?foo=1&bar=2’

We get the same response, when using MyApache::FilterSnoop , because our snooping filter didn’t
change anything. Though there was a lot of output printed to error_log. We present it all here, since it
helps a lot to understand how filters work.

First we can see the connection input filter at work, as it processes the HTTP headers. We can see that for
this request each header is put into a separate brigade with a single bucket. The data is conveniently
enclosed by [] so you can see the new line characters as well.

 <<< connection input filter
 o bucket 1: HEAP
 [POST /dump?foo=1&bar=2 HTTP/1.1
]

 <<< connection input filter
 o bucket 1: HEAP
 [TE: deflate,gzip;q=0.3
]

 <<< connection input filter
 o bucket 1: HEAP
 [Connection: TE, close
]

 <<< connection input filter
 o bucket 1: HEAP
 [Host: localhost:8008
]

 <<< connection input filter
 o bucket 1: HEAP
 [User-Agent: lwp-request/2.01
]

 <<< connection input filter
 o bucket 1: HEAP
 [Content-Length: 14
]

 <<< connection input filter
 o bucket 1: HEAP
 [Content-Type: application/x-www-form-urlencoded
]

13 Nov 200460

Philippe M. Chiasson6.5 All-in-One Filter

 <<< connection input filter
 o bucket 1: HEAP
 [
]

Here the HTTP header has been terminated by a double new line. So far all the buckets were of the HEAP
type, meaning that they were allocated from the heap memory. Notice that the HTTP request input filters
will never see the bucket brigades with HTTP headers, as it has been consumed by the last core connection
filter.

The following two entries are generated when MyApache::Dump::handler reads the POSTed
content:

 <<< connection input filter
 o bucket 1: HEAP
 [mod_perl rules]

 <<< request input filter
 o bucket 1: HEAP
 [mod_perl rules]
 o bucket 2: EOS
 []

as we saw earlier on the diagram, the connection input filter is run before the request input filter. Since our
connection input filter was passing the data through unmodified and no other custom connection input
filter was configured, the request input filter sees the same data. The last bucket in the brigade received by
the request input filter is of type EOS, meaning that all the input data from the current request has been
received.

Next we can see that MyApache::Dump::handler has generated its response. However we can see
that only the request output filter gets run at this point:

 >>> request output filter
 o bucket 1: TRANSIENT
 [args:
 foo=1&bar=2
 content:
 mod_perl rules
]

This happens because Apache hasn’t sent yet the response HTTP headers to the client. The request filter
sees a bucket brigade with a single bucket of type TRANSIENT which is allocated from the stack memory.

The moment the first bucket brigade of the response body has entered the connection output filters,
Apache injects a bucket brigade with the HTTP headers. Therefore we can see that the connection output
filter is filtering the brigade with HTTP headers (notice that the request output filters don’t see it):

6113 Nov 2004

6.5 All-in-One FilterInput and Output Filters

 >>> connection output filter
 o bucket 1: HEAP
 [HTTP/1.1 200 OK
 Date: Fri, 04 Jun 2004 09:13:26 GMT
 Server: Apache/2.0.50-dev (Unix) mod_perl/1.99_15-dev
 Perl/v5.8.4 mod_ssl/2.0.50-dev OpenSSL/0.9.7c DAV/2
 Connection: close
 Transfer-Encoding: chunked
 Content-Type: text/plain; charset=ISO-8859-1

]

and followed by the first response body’s brigade:

 >>> connection output filter
 o bucket 1: TRANSIENT
 [2b
]
 o bucket 2: TRANSIENT
 [args:
 foo=1&bar=2
 content:
 mod_perl rules

]
 o bucket 3: IMMORTAL
 [
]

If the response is large, the request and connection filters will filter chunks of the response one by one.

Finally, Apache sends a series of the bucket brigades to finish off the response, including the end of stream
meta-bucket to tell filters that they shouldn’t expect any more data, and flush buckets to flush the data, to
make sure that any buffered output is sent to the client:

 >>> connection output filter
 o bucket 1: IMMORTAL
 [0

]
 o bucket 2: EOS
 []

 >>> connection output filter
 o bucket 1: FLUSH
 []

 >>> connection output filter
 o bucket 1: FLUSH
 []

This module helps to understand that each filter handler can be called many time during each request and
connection. It’s called for each bucket brigade.

13 Nov 200462

Philippe M. Chiasson6.5 All-in-One Filter

Also it’s important to mention that HTTP request input filters are invoked only if there is some POSTed
data to read and it’s consumed by a content handler.

6.6 Input Filters
mod_perl supports Connection and HTTP Request input filters:

6.6.1 Connection Input Filters

Let’s say that we want to test how our handlers behave when they are requested as HEAD requests, rather
than GET. We can alter the request headers at the incoming connection level transparently to all handlers.

This example’s filter handler looks for data like:

 GET /perl/test.pl HTTP/1.1

and turns it into:

 HEAD /perl/test.pl HTTP/1.1

The following input filter handler does that by directly manipulating the bucket brigades:

 file:MyApache/InputFilterGET2HEAD.pm

 package MyApache::InputFilterGET2HEAD;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterConnectionHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;

 return Apache::DECLINED if $f->ctx;

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 my $ba = $f->c->bucket_alloc;

 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 $b->read(my $data);
 warn("data: $data\n");

 if ($data and $data =~ s|^GET|HEAD|) {
 my $bn = APR::Bucket->new($ba, $data);

6313 Nov 2004

6.6 Input FiltersInput and Output Filters

 $b->insert_after($bn);
 $b->remove; # no longer needed
 $f->ctx(1); # flag that that we have done the job
 last;
 }
 }

 Apache::OK;
 }

 1;

The filter handler is called for each bucket brigade, which in turn includes buckets with data. The gist of
any input filter handler is to request the bucket brigade from the upstream filter, and return it downstream
filter using the second argument $bb . It’s important to remember that you can call methods on this argu-
ment, but you shouldn’t assign to this argument, or the chain will be broken. You have two techniques to
choose from to retrieve-modify-return bucket brigades:

1. Create a new empty bucket brigade $ctx_bb , pass it to the upstream filter via get_brigade()
and wait for this call to return. When it returns, $ctx_bb is populated with buckets. Now the filter
should move the bucket from $ctx_bb to $bb , on the way modifying the buckets if needed. Once
the buckets are moved, and the filter returns, the downstream filter will receive the populated bucket
brigade.

2. Pass $bb to get_brigade() to the upstream filter, so it will be populated with buckets. Once
get_brigade() returns, the filter can go through the buckets and modify them in place, or it can
do nothing and just return (in which case, the downstream filter will receive the bucket brigade
unmodified).

Both techniques allow addition and removal of buckets. Though the second technique is more efficient
since it doesn’t have the overhead of create the new brigade and moving the bucket from one brigade to
another. In this example we have chosen to use the second technique, in the next example we will see the
first technique.

Our filter has to perform the substitution of only one HTTP header (which normally resides in one bucket),
so we have to make sure that no other data gets mangled (e.g. there could be POSTED data and it may
match /^GET/ in one of the buckets). We use $f->ctx as a flag here. When it’s undefined the filter
knows that it hasn’t done the required substitution, though once it completes the job it sets the context to 1.

To optimize the speed, the filter immediately returns Apache::DECLINED when it’s invoked after the
substitution job has been done:

 return Apache::DECLINED if $f->ctx;

In that case mod_perl will call get_brigade() internally which will pass the bucket brigade to the
downstream filter. Alternatively the filter could do:

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;
 return Apache::OK if $f->ctx;

13 Nov 200464

Philippe M. Chiasson6.6.1 Connection Input Filters

but this is a bit less efficient.

[META: the most efficient thing to do is to remove the filter itself once the job is done, so it won’t be even
invoked after the job has been done.

 if ($f->ctx) {
 $f->remove;
 return Apache::DECLINED;
 }

However, this can’t be used with Apache 2.0.49 and lower, since it has a bug when trying to remove the
edge connection filter (it doesn’t remove it). Most likely that problem will be not fixed in the 2.0 series
due to design flows. I don’t know if it’s going to be fixed in 2.1 series.]

If the job wasn’t done yet, the filter calls get_brigade , which populates the $bb bucket brigade. Next,
the filter steps through the buckets looking for the bucket that matches the regex: /^GET/ . If that
happens, a new bucket is created with the modified data (s/^GET/HEAD/ . Now it has to be inserted in
place of the old bucket. In our example we insert the new bucket after the bucket that we have just modi-
fied and immediately remove that bucket that we don’t need anymore:

 $b->insert_after($bn);
 $b->remove; # no longer needed

Finally we set the context to 1, so we know not to apply the substitution on the following data and break
from the for loop.

The handler returns Apache::OK indicating that everything was fine. The downstream filter will receive
the bucket brigade with one bucket modified.

Now let’s check that the handler works properly. For example, consider the following response handler:

 file:MyApache/RequestType.pm

 package MyApache::RequestType;

 use strict;
 use warnings;

 use Apache::RequestIO ();
 use Apache::RequestRec ();
 use Apache::Response ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 my $response = "the request type was " . $r->method;
 $r->set_content_length(length $response);
 $r->print($response);

6513 Nov 2004

6.6.1 Connection Input FiltersInput and Output Filters

 Apache::OK;
 }

 1;

which returns to the client the request type it has issued. In the case of the HEAD request Apache will
discard the response body, but it’ll will still set the correct Content-Length header, which will be 24
in case of the GET request and 25 for HEAD. Therefore if this response handler is configured as:

 Listen 8005
 <VirtualHost _default_:8004>
 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

and a GET request is issued to /:

 panic% perl -MLWP::UserAgent -le \
 ’$r = LWP::UserAgent->new()->get("http://localhost:8004/"); \
 print $r->headers->content_length . ": ". $r->content’
 24: the request type was GET

where the response’s body is:

 the request type was GET

And the Content-Length header is set to 24.

However if we enable the MyApache::InputFilterGET2HEAD input connection filter:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlInputFilterHandler +MyApache::InputFilterGET2HEAD

 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

And issue the same GET request, we get only:

 25:

which means that the body was discarded by Apache, because our filter turned the GET request into a
HEAD request and if Apache wasn’t discarding the body on HEAD, the response would be:

 the request type was HEAD

13 Nov 200466

Philippe M. Chiasson6.6.1 Connection Input Filters

that’s why the content length is reported as 25 and not 24 as in the real GET request.

6.6.2 HTTP Request Input Filters

Request filters are really non-different from connection filters, other than that they are working on request
and response bodies and have an access to a request object.

6.6.3 Bucket Brigade-based Input Filters

Let’s look at the request input filter that lowers the case of the request’s body: MyApache::InputRe-
questFilterLC :

 file:MyApache/InputRequestFilterLC.pm

 package MyApache::InputRequestFilterLC;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::Connection ();
 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterRequestHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;

 my $bb_ctx = APR::Brigade->new($f->c->pool, $f->c->bucket_alloc);
 my $rv = $f->next->get_brigade($bb_ctx, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 my $ba = $f->c->bucket_alloc;

 while (!$bb_ctx->is_empty) {
 my $b = $bb_ctx->first;

 $b->remove;

 if ($b->is_eos) {
 $bb->insert_tail($b);
 last;
 }

 $b->read(my $data);
 $b = APR::Bucket->new($ba, lc $data);

 $bb->insert_tail($b);
 }

6713 Nov 2004

6.6.2 HTTP Request Input FiltersInput and Output Filters

 Apache::OK;
 }

 1;

As promised, in this filter handler we have used the first technique of bucket brigade modification. The
handler creates a temporary bucket brigade (ctx_bb), populates it with data using get_brigade() ,
and then moves buckets from it to the bucket brigade $bb , which is then retrieved by the downstream
filter when our handler returns.

This filter doesn’t need to know whether it was invoked for the first time or whether it has already done
something. It’s a state-less handler, since it has to lower case everything that passes through it. Notice that
this filter can’t be used as the connection filter for HTTP requests, since it will invalidate the incoming
request headers; for example the first header line:

 GET /perl/TEST.pl HTTP/1.1

will become:

 get /perl/test.pl http/1.1

which messes up the request method, the URL and the protocol.

Now if we use the MyApache::Dump response handler, we have developed before in this chapter, which
dumps the query string and the content body as a response, and configure the server as follows:

 <Location /lc_input>
 SetHandler modperl
 PerlResponseHandler +MyApache::Dump
 PerlInputFilterHandler +MyApache::InputRequestFilterLC
 </Location>

When issuing a POST request:

 % echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/lc_input?FoO=1&BAR=2’

we get a response:

 args:
 FoO=1&BAR=2
 content:
 mod_perl rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
You can see that the query string wasn’t changed.

13 Nov 200468

Philippe M. Chiasson6.6.3 Bucket Brigade-based Input Filters

6.6.4 Stream-oriented Input Filters

Let’s now look at the same filter implemented using the stream-oriented API.

 file:MyApache/InputRequestFilterLC2.pm

 package MyApache::InputRequestFilterLC2;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::Const -compile => ’OK’;

 use constant BUFF_LEN => 1024;

 sub handler : FilterRequestHandler {
 my $f = shift;

 while ($f->read(my $buffer, BUFF_LEN)) {
 $f->print(lc $buffer);
 }

 Apache::OK;
 }
 1;

Now you probably ask yourself why did we have to go through the bucket brigades filters when this all
can be done so much simpler. The reason is that we wanted you to understand how the filters work under-
neath, which will assist a lot when you will need to debug filters or optimize their speed. In certain cases a
bucket brigade filter may be more efficient than the stream-oriented. For example if the filter applies trans-
formation to selected buckets, certain buckets may contain open filehandles or pipes, rather than real data.
And when you call read() the buckets will be forced to read that data in. But if you didn’t want to modify
these buckets you could pass them as they are and let Apache do faster techniques for sending data from
the file handles or pipes.

The logic is very simple here, the filter reads in loop, and prints the modified data, which at some point
will be sent to the next filter. This point happens every time the internal mod_perl buffer is full or when
the filter returns.

read() populates $buffer to a maximum of BUFF_LEN characters (1024 in our example). Assuming
that the current bucket brigade contains 2050 chars, read() will get the first 1024 characters, then 1024
characters more and finally the remaining 2 characters. Notice that even though the response handler may
have sent more than 2050 characters, every filter invocation operates on a single bucket brigade so you
have to wait for the next invocation to get more input. In one of the earlier examples we have shown that
you can force the generation of several bucket brigades in the content handler by using rflush() . For
example:

6913 Nov 2004

6.6.4 Stream-oriented Input FiltersInput and Output Filters

 $r->print("string");
 $r->rflush();
 $r->print("another string");

It’s only possible to get more than one bucket brigade from the same filter handler invocation if the filter
is not using the streaming interface and by simply calling get_brigade() as many times as needed or
till EOS is received.

The configuration section is pretty much identical:

 <Location /lc_input2>
 SetHandler modperl
 PerlResponseHandler +MyApache::Dump
 PerlInputFilterHandler +MyApache::InputRequestFilterLC2
 </Location>

When issuing a POST request:

 % echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/lc_input2?FoO=1&BAR=2’

we get a response:

 args:
 FoO=1&BAR=2
 content:
 mod_perl rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
You can see that the query string wasn’t changed.

6.7 Output Filters
mod_perl supports Connection and HTTP Request output filters:

6.7.1 Connection Output Filters

Connection filters filter all the data that is going through the server. Therefore if the connection is of
HTTP request type, connection output filters see the headers and the body of the response, whereas request
output filters see only the response body.

6.7.2 HTTP Request Output Filters

As mentioned earlier output filters can be written using the bucket brigades manipulation or the simplified
stream-oriented interface.

First let’s develop a response handler that sends two lines of output: numerals 1234567890 and the
English alphabet in a single string:

13 Nov 200470

Philippe M. Chiasson6.7 Output Filters

 file:MyApache/SendAlphaNum.pm

 package MyApache::SendAlphaNum;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);

 $r->print(1..9, "0\n");
 $r->print(’a’..’z’, "\n");

 Apache::OK;
 }
 1;

The purpose of our filter handler is to reverse every line of the response body, preserving the new line
characters in their places. Since we want to reverse characters only in the response body, without breaking
the HTTP headers, we will use the HTTP request output filter.

6.7.3 Stream-oriented Output Filters

The first filter implementation is using the stream-oriented filtering API:

 file:MyApache/FilterReverse1.pm

 package MyApache::FilterReverse1;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::Const -compile => qw(OK);

 use constant BUFF_LEN => 1024;

 sub handler : FilterRequestHandler {
 my $f = shift;

 while ($f->read(my $buffer, BUFF_LEN)) {
 for (split "\n", $buffer) {
 $f->print(scalar reverse $_);
 $f->print("\n");
 }
 }

7113 Nov 2004

6.7.3 Stream-oriented Output FiltersInput and Output Filters

 Apache::OK;
 }
 1;

Next, we add the following configuration to httpd.conf:

 PerlModule MyApache::FilterReverse1
 PerlModule MyApache::SendAlphaNum
 <Location /reverse1>
 SetHandler modperl
 PerlResponseHandler MyApache::SendAlphaNum
 PerlOutputFilterHandler MyApache::FilterReverse1
 </Location>

Now when a request to /reverse1 is made, the response handler MyApache::SendAl-
phaNum::handler() sends:

 1234567890
 abcdefghijklmnopqrstuvwxyz

as a response and the output filter handler MyApache::FilterReverse1::handler reverses the
lines, so the client gets:

 0987654321
 zyxwvutsrqponmlkjihgfedcba

The Apache::Filter module loads the read() and print() methods which encapsulate the
stream-oriented filtering interface.

The reversing filter is quite simple: in the loop it reads the data in the readline() mode in chunks up to the
buffer length (1024 in our example), and then prints each line reversed while preserving the new line
control characters at the end of each line. Behind the scenes $f->read() retrieves the incoming brigade
and gets the data from it, and $f->print() appends to the new brigade which is then sent to the next
filter in the stack. read() breaks the while loop, when the brigade is emptied or the end of stream is
received.

In order not to distract the reader from the purpose of the example the used code is oversimplified and
won’t handle correctly input lines which are longer than 1024 characters and possibly using a different line
termination token (could be "\n", "\r" or "\r\n" depending on a platform). Moreover a single line may be
split between across two or even more bucket brigades, so we have to store the unprocessed string in the
filter context, so it can be used on the following invocations. So here is an example of a more complete
handler, which does takes care of these issues:

 sub handler {
 my $f = shift;

 my $leftover = $f->ctx;
 while ($f->read(my $buffer, BUFF_LEN)) {
 $buffer = $leftover . $buffer if defined $leftover;
 $leftover = undef;
 while ($buffer =~ /([^\r\n]*)([\r\n]*)/g) {
 $leftover = $1, last unless $2;

13 Nov 200472

Philippe M. Chiasson6.7.3 Stream-oriented Output Filters

 $f->print(scalar(reverse $1), $2);
 }
 }

 if ($f->seen_eos) {
 $f->print(scalar reverse $leftover) if defined $leftover;
 }
 else {
 $f->ctx($leftover) if defined $leftover;
 }

 return Apache::OK;
 }

The handler uses the $leftover variable to store unprocessed data as long as it fails to assemble a
complete line or there is an incomplete line following the new line token. On the next handler invocation
this data is then prepended to the next chunk that is read. When the filter is invoked on the last time, it
unconditionally reverses and flushes any remaining data.

6.7.4 Bucket Brigade-based Output Filters

The following filter implementation is using the bucket brigades API to accomplish exactly the same task
as the first filter.

 file:MyApache/FilterReverse2.pm

 package MyApache::FilterReverse2;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterRequestHandler {
 my($f, $bb) = @_;

 my $bb_ctx = APR::Brigade->new($f->c->pool, $f->c->bucket_alloc);

 my $ba = $f->c->bucket_alloc;

 while (!$bb->is_empty) {
 my $b = $bb->first;

 $b->remove;

 if ($b->is_eos) {
 $bb_ctx->insert_tail($b);
 last;
 }

7313 Nov 2004

6.7.4 Bucket Brigade-based Output FiltersInput and Output Filters

 if ($b->read(my $data)) {
 $data = join "",
 map {scalar(reverse $_), "\n"} split "\n", $data;
 $b = APR::Bucket->new($ba, $data);
 }

 $bb_ctx->insert_tail($b);
 }

 my $rv = $f->next->pass_brigade($bb_ctx);
 return $rv unless $rv == APR::SUCCESS;

 Apache::OK;
 }
 1;

and the corresponding configuration:

 PerlModule MyApache::FilterReverse2
 PerlModule MyApache::SendAlphaNum
 <Location /reverse2>
 SetHandler modperl
 PerlResponseHandler MyApache::SendAlphaNum
 PerlOutputFilterHandler MyApache::FilterReverse2
 </Location>

Now when a request to /reverse2 is made, the client gets:

 0987654321
 zyxwvutsrqponmlkjihgfedcba

as expected.

The bucket brigades output filter version is just a bit more complicated than the stream-oriented one. The
handler receives the incoming bucket brigade $bb as its second argument. Since when the handler is
completed it must pass a brigade to the next filter in the stack, we create a new bucket brigade into which
we are going to put the modified buckets and which eventually we pass to the next filter.

The core of the handler is in removing buckets from the head of the bucket brigade $bb while there are
some, reading the data from the buckets, reversing and putting it into a newly created bucket which is
inserted to the end of the new bucket brigade. If we see a bucket which designates the end of stream, we
insert that bucket to the tail of the new bucket brigade and break the loop. Finally we pass the created
brigade with modified data to the next filter and return.

Similarly to the original version of MyApache::FilterReverse1::handler , this filter is not
smart enough to handle incomplete lines. However the exercise of making the filter foolproof should be
trivial by porting a better matching rule and using the $leftover buffer from the previous section is
trivial and left as an exercise to the reader.

13 Nov 200474

Philippe M. Chiasson6.7.4 Bucket Brigade-based Output Filters

7 HTTP Handlers

7513 Nov 2004

7 HTTP HandlersHTTP Handlers

7.1 Description
This chapter explains how to implement the HTTP protocol handlers in mod_perl.

7.2 HTTP Request Cycle Phases
Those familiar with mod_perl 1.0 will find the HTTP request cycle in mod_perl 2.0 to be almost identical
to the mod_perl 1.0’s model. The different things are:

a new directive PerlMapToStorageHandler was added to match the new phase
map_to_storage added by Apache 2.0.

the PerlHandler directive has been renamed to PerlResponseHandler to better match the
corresponding Apache phase name (response).

the response phase now includes filtering.

13 Nov 200476

Philippe M. Chiasson7.1 Description

From the diagram it can be seen that an HTTP request is processes by 12 phases, executed in the following
order:

1. PerlPostReadRequestHandler (PerlInitHandler)
2. PerlTransHandler
3. PerlMapToStorageHandler
4. PerlHeaderParserHandler (PerlInitHandler)
5. PerlAccessHandler
6. PerlAuthenHandler
7. PerlAuthzHandler
8. PerlTypeHandler
9. PerlFixupHandler

7713 Nov 2004

7.2 HTTP Request Cycle PhasesHTTP Handlers

10. PerlResponseHandler
11. PerlLogHandler
12. PerlCleanupHandler

It’s possible that the cycle will not be completed if any of the phases terminates it, usually when an error
happens.

Notice that when the response handler is reading the input data it can be filtered through request input
filters, which are preceded by connection input filters if any. Similarly the generated response is first run
through request output filters and eventually through connection output filters before it’s sent to the client.

Now let’s discuss each of the mentioned handlers in detail.

7.2.1 PerlPostReadRequestHandler

The post_read_request phase is the first request phase and happens immediately after the request has been
read and HTTP headers were parsed.

This phase is usually used to do processing that must happen once per request. For example
Apache::Reload is usually invoked at this phase to reload modified Perl modules.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

Now, let’s look at an example. Consider the following registry script:

 touch.pl

 use strict;
 use warnings;

 use Apache::ServerUtil ();
 use Apache::RequestIO ();
 use File::Spec::Functions qw(catfile);

 my $r = shift;
 $r->content_type(’text/plain’);

 my $conf_file = catfile Apache::ServerUtil::server_root,
 "conf", "httpd.conf";

 printf "$conf_file is %0.2f minutes old\n", 60*24*(-M $conf_file);

This registry script is supposed to print when the last time httpd.conf has been modified, compared to the
start of the request process time. If you run this script several times you might be surprised that it reports
the same value all the time. Unless the request happens to be served by a recently started child process
which will then report a different value. But most of the time the value won’t be reported correctly.

13 Nov 200478

Philippe M. Chiasson7.2.1 PerlPostReadRequestHandler

This happens because the -M operator reports the difference between file’s modification time and the
value of a special Perl variable $^T . When we run scripts from the command line, this variable is always
set to the time when the script gets invoked. Under mod_perl this variable is getting preset once when the
child process starts and doesn’t change since then, so all requests see the same time, when operators like
-M, -C and -A are used.

Armed with this knowledge, in order to make our code behave similarly to the command line programs we
need to reset $^T to the request’s start time, before -M is used. We can change the script itself, but what if
we need to do the same change for several other scripts and handlers? A simple PerlPostRead-
RequestHandler handler, which will be executed as the very first thing of each requests, comes handy
here:

 file:MyApache/TimeReset.pm

 package MyApache::TimeReset;

 use strict;
 use warnings;

 use Apache::RequestRec ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;
 $^T = $r->request_time;
 return Apache::OK;
 }
 1;

We could do:

 $^T = time();

But to make things more efficient we use $r->request_time since the request object $r already
stores the request’s start time, so we get it without performing an additional system call.

To enable it just add to httpd.conf:

 PerlPostReadRequestHandler MyApache::TimeReset

either to the global section, or to the <VirtualHost> section if you want this handler to be run only for
a specific virtual host.

7.2.2 PerlTransHandler

The translate phase is used to perform the manipulation of a request’s URI. If no custom handler is
provided, the server’s standard translation rules (e.g., Alias directives, mod_rewrite, etc.) will continue
to be used. A PerlTransHandler handler can alter the default translation mechanism or completely
override it.

7913 Nov 2004

7.2.2 PerlTransHandlerHTTP Handlers

In addition to doing the translation, this stage can be used to modify the URI itself and the request method.
This is also a good place to register new handlers for the following phases based on the URI.

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

There are many useful things that can be performed at this stage. Let’s look at the example handler that
rewrites request URIs, similar to what mod_rewrite does. For example, if your web-site was originally
made of static pages, and now you have moved to a dynamic page generation chances are that you don’t
want to change the old URIs, because you don’t want to break links for those who link to your site. If the
URI:

 http://example.com/news/20021031/09/index.html

is now handled by:

 http://example.com/perl/news.pl?date=20021031&id=09&page=index.html

the following handler can do the rewriting work transparent to news.pl, so you can still use the former URI
mapping:

 file:MyApache/RewriteURI.pm

 package MyApache::RewriteURI;

 use strict;
 use warnings;

 use Apache::RequestRec ();

 use Apache::Const -compile => qw(DECLINED);

 sub handler {
 my $r = shift;

 my($date, $id, $page) = $r->uri =~ m|^/news/(\d+)/(\d+)/(.*)|;
 $r->uri("/perl/news.pl");
 $r->args("date=$date&id=$id&page=$page");

 return Apache::DECLINED;
 }
 1;

The handler matches the URI and assigns a new URI via $r->uri() and the query string via
$r->args() . It then returns Apache::DECLINED , so the next translation handler will get invoked, if
more rewrites and translations are needed.

Of course if you need to do a more complicated rewriting, this handler can be easily adjusted to do so.

13 Nov 200480

Philippe M. Chiasson7.2.2 PerlTransHandler

To configure this module simply add to httpd.conf:

 PerlTransHandler +MyApache::RewriteURI

7.2.3 PerlMapToStorageHandler

The map_to_storage phase is used to perform the translation of a request’s URI into a corresponding file-
name. If no custom handler is provided, the server will try to walk the filesystem trying to find what file or
directory corresponds to the request’s URI. Since usually mod_perl handler don’t have corresponding files
on the filesystem, you will want to shortcut this phase and save quite a few CPU cycles.

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

For example if you don’t want Apache to try to attempt to translate URI into a filename, just add a
handler:

 PerlMapToStorageHandler MyApache::NoTranslation

using the following code:

 file:MyApache/NoTranslation.pm

 package MyApache::NoTranslation;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 # skip ap_directory_walk stat() calls
 return Apache::OK;
 }
 1;

Apache also uses this phase to handle TRACE requests. So if you shortcut it, TRACE calls will be not
handled. In case you need to handle such, you may rewrite it as:

 file:MyApache/NoTranslation2.pm

 package MyApache::NoTranslation2;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::RequestRec ();

8113 Nov 2004

7.2.3 PerlMapToStorageHandlerHTTP Handlers

 use Apache::Const -compile => qw(DECLINED OK M_TRACE);

 sub handler {
 my $r = shift;

 return Apache::DECLINED if $r->method_number == Apache::M_TRACE;

 # skip ap_directory_walk stat() calls
 return Apache::OK;
 }
 1;

Another way to prevent the core translation is to set $r->filename() to some value, which can also be
done in the PerlTransHandler , if you are already using it.

7.2.4 PerlHeaderParserHandler

The header_parser phase is the first phase to happen after the request has been mapped to its <Loca-
tion> (or an equivalent container). At this phase the handler can examine the request headers and to take
a special action based on these. For example this phase can be used to block evil clients targeting certain
resources, while little resources were wasted so far.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

This phase is very similar to PerlPostReadRequestHandler , with the only difference that it’s run
after the request has been mapped to the resource. Both phases are useful for doing something once per
request, as early as possible. And usually you can take any PerlPostReadRequestHandler and
turn it into PerlHeaderParserHandler by simply changing the directive name in httpd.conf and
moving it inside the container where it should be executed. Moreover, because of this similarity mod_perl
provides a special directive PerlInitHandler which if found outside resource containers behaves as
PerlPostReadRequestHandler , otherwise as PerlHeaderParserHandler .

You already know that Apache handles the HEAD, GET, POST and several other HTTP methods. But did
you know that you can invent your own HTTP method as long as there is a client that supports it. If you
think of emails, they are very similar to HTTP messages: they have a set of headers and a body, sometimes
a multi-part body. Therefore we can develop a handler that extends HTTP by adding a support for the
EMAIL method. We can enable this protocol extension and push the real content handler during the
PerlHeaderParserHandler phase:

 <Location /email>
 PerlHeaderParserHandler MyApache::SendEmail
 </Location>

and here is the MyApache::SendEmail handler:

 file:MyApache/SendEmail.pm

 package MyApache::SendEmail;

13 Nov 200482

Philippe M. Chiasson7.2.4 PerlHeaderParserHandler

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();
 use Apache::Server ();
 use Apache::Process ();
 use APR::Table ();

 use Apache::Const -compile => qw(DECLINED OK);

 use constant METHOD => ’EMAIL’;
 use constant SMTP_HOSTNAME => "localhost";

 sub handler {
 my $r = shift;

 return Apache::DECLINED unless $r->method eq METHOD;

 Apache::RequestUtil::method_register($r->server->process->pconf,
 METHOD);
 $r->handler("perl-script");
 $r->push_handlers(PerlResponseHandler => \&send_email_handler);

 return Apache::OK;
 }

 sub send_email_handler {
 my $r = shift;

 my %headers = map {$_ => $r->headers_in->get($_)} qw(To From Subject);
 my $content = content($r);

 my $status = send_email(\%headers, \$content);

 $r->content_type(’text/plain’);
 $r->print($status ? "ACK" : "NACK");
 return Apache::OK;
 }

 sub send_email {
 my($rh_headers, $r_body) = @_;

 require MIME::Lite;
 MIME::Lite->send("smtp", SMTP_HOSTNAME, Timeout => 60);

 my $msg = MIME::Lite->new(%$rh_headers, Data => $$r_body);
 #warn $msg->as_string;
 $msg->send;
 }

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => qw(MODE_READBYTES);
 use APR::Const -compile => qw(SUCCESS BLOCK_READ);

8313 Nov 2004

7.2.4 PerlHeaderParserHandlerHTTP Handlers

 use constant IOBUFSIZE => 8192;

 sub content {
 my $r = shift;

 my $bb = APR::Brigade->new($r->pool, $r->connection->bucket_alloc);

 my $data = ’’;
 my $seen_eos = 0;
 do {
 $r->input_filters->get_brigade($bb,
 Apache::MODE_READBYTES, APR::BLOCK_READ, IOBUFSIZE);

 while (!$bb->is_empty) {
 my $b = $bb->first;
 $b->remove;

 if ($b->is_eos) {

 $seen_eos++;
 last;
 }

 $b->read(my $buf);
 $data .= $buf;
 }

 } while (!$seen_eos);

 $bb->destroy;

 return $data;
 }

 1;

Let’s get the less interesting code out of the way. The function content() grabs the request body. The func-
tion send_email() sends the email over SMTP. You should adjust the constant SMTP_HOSTNAME to point
to your outgoing SMTP server. You can replace this function with your own if you prefer to use a different
method to send email.

Now to the more interesting functions. The function handler() returns immediately and passes the
control to the next handler if the request method is not equal to EMAIL (set in the METHOD constant):

 return Apache::DECLINED unless $r->method eq METHOD;

Next it tells Apache that this new method is a valid one and that the perl-script handler will do the
processing.

 Apache::RequestUtil::method_register($r->server->process->pconf,
 METHOD);
 $r->handler("perl-script");

13 Nov 200484

Philippe M. Chiasson7.2.4 PerlHeaderParserHandler

Notice that we use the pconf pool which persists through the server life, and not $r->pool whose life
span will end at the end of the request.

Finally it pushes the function send_email_handler() to the PerlResponseHandler list of
handlers:

 $r->push_handlers(PerlResponseHandler => \&send_email_handler);

The function terminates the header_parser phase by:

 return Apache::OK;

All other phases run as usual, so you can reuse any HTTP protocol hooks, such as authentication and fixup
phases.

When the response phase starts send_email_handler() is invoked, assuming that no other response
handlers were inserted before it. The response handler consists of three parts. Retrieve the email headers
To, From and Subject , and the body of the message:

 my %headers = map {$_ => $r->headers_in->get($_)} qw(To From Subject);
 my $content = $r->content;

Then send the email:

 my $status = send_email(\%headers, \$content);

Finally return to the client a simple response acknowledging that email has been sent and finish the
response phase by returning Apache::OK :

 $r->content_type(’text/plain’);
 $r->print($status ? "ACK" : "NACK");
 return Apache::OK;

Of course you will want to add extra validations if you want to use this code in production. This is just a
proof of concept implementation.

As already mentioned when you extend an HTTP protocol you need to have a client that knows how to use
the extension. So here is a simple client that uses LWP::UserAgent to issue an EMAIL method request
over HTTP protocol:

 file:send_http_email.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 require LWP::UserAgent;

 my $url = "http://localhost:8000/email/";

 my %headers = (
 From => ’example@example.com’,

8513 Nov 2004

7.2.4 PerlHeaderParserHandlerHTTP Handlers

 To => ’example@example.com’,
 Subject => ’3 weeks in Tibet’,
);

 my $content = <<EOI;
 I didn’t have an email software,
 but could use HTTP so I’m sending it over HTTP
 EOI

 my $headers = HTTP::Headers->new(%headers);
 my $req = HTTP::Request->new("EMAIL", $url, $headers, $content);
 my $res = LWP::UserAgent->new->request($req);
 print $res->is_success ? $res->content : "failed";

most of the code is just a custom data. The code that does something consists of four lines at the very end.
Create HTTP::Headers and HTTP::Request object. Issue the request and get the response. Finally
print the response’s content if it was successful or just "failed" if not.

Now save the client code in the file send_http_email.pl, adjust the To field, make the file executable and
execute it, after you have restarted the server. You should receive an email shortly to the address set in the
To field.

7.2.5 PerlInitHandler

When configured inside any container directive, except <VirtualHost> , this handler is an alias for
PerlHeaderParserHandler described later. Otherwise it acts as an alias for PerlPostRead-
RequestHandler described earlier.

It is the first handler to be invoked when serving a request.

This phase is of type RUN_ALL.

The best example here would be to use Apache::Reload which takes the benefit of this directive.
Usually Apache::Reload is configured as:

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "MyApache::*"

which during the current HTTP request will monitor and reload all MyApache::* modules that have
been modified since the last HTTP request. However if we move the global configuration into a <Loca-
tion> container:

 <Location /devel>
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "MyApache::*"
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
 </Location>

13 Nov 200486

Philippe M. Chiasson7.2.5 PerlInitHandler

Apache::Reload will reload the modified modules, only when a request to the /devel namespace is
issued, because PerlInitHandler plays the role of PerlHeaderParserHandler here.

7.2.6 PerlAccessHandler

The access_checker phase is the first of three handlers that are involved in what’s known as AAA:
Authentication and Authorization, and Access control.

This phase can be used to restrict access from a certain IP address, time of the day or any other rule not
connected to the user’s identity.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

The concept behind access checker handler is very simple, return Apache::FORBIDDEN if the access is
not allowed, otherwise return Apache::OK .

The following example handler denies requests made from IPs on the blacklist.

 file:MyApache/BlockByIP.pm

 package MyApache::BlockByIP;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::Connection ();

 use Apache::Const -compile => qw(FORBIDDEN OK);

 my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

 sub handler {
 my $r = shift;

 return exists $bad_ips{$r->connection->remote_ip}
 ? Apache::FORBIDDEN
 : Apache::OK;
 }

 1;

The handler retrieves the connection’s IP address, looks it up in the hash of blacklisted IPs and forbids the
access if found. If the IP is not blacklisted, the handler returns control to the next access checker handler,
which may still block the access based on a different rule.

To enable the handler simply add it to the container that needs to be protected. For example to protect an
access to the registry scripts executed from the base location /perl add:

8713 Nov 2004

7.2.6 PerlAccessHandlerHTTP Handlers

 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAccessHandler MyApache::BlockByIP
 Options +ExecCGI
 </Location>

7.2.7 PerlAuthenHandler

The check_user_id (authen) phase is called whenever the requested file or directory is password protected.
This, in turn, requires that the directory be associated with AuthName, AuthType and at least one
require directive.

This phase is usually used to verify a user’s identification credentials. If the credentials are verified to be
correct, the handler should return Apache::OK . Otherwise the handler returns
Apache::HTTP_UNAUTHORIZED to indicate that the user has not authenticated successfully. When
Apache sends the HTTP header with this code, the browser will normally pop up a dialog box that
prompts the user for login information.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

The following handler authenticates users by asking for a username and a password and lets them in only
if the length of a string made from the supplied username and password and a single space equals to the
secret length, specified by the constant SECRET_LENGTH.

 file:MyApache/SecretLengthAuth.pm

 package MyApache::SecretLengthAuth;

 use strict;
 use warnings;

 use Apache::Access ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => qw(OK DECLINED HTTP_UNAUTHORIZED);

 use constant SECRET_LENGTH => 14;

 sub handler {
 my $r = shift;

 my ($status, $password) = $r->get_basic_auth_pw;
 return $status unless $status == Apache::OK;

 return Apache::OK
 if SECRET_LENGTH == length join " ", $r->user, $password;

 $r->note_basic_auth_failure;

13 Nov 200488

Philippe M. Chiasson7.2.7 PerlAuthenHandler

 return Apache::HTTP_UNAUTHORIZED;
 }

 1;

First the handler retrieves the status of the authentication and the password in plain text. The status will be
set to Apache::OK only when the user has supplied the username and the password credentials. If the
status is different, we just let Apache handle this situation for us, which will usually challenge the client so
it’ll supply the credentials.

Note that get_basic_auth_pw() does a few things behind the scenes, which are important to under-
stand if you plan on implementing your own authentication mechanism that does not use
get_basic_auth_pw() . First, is checks the value of the configured AuthType for the request,
making sure it is Basic . Then it makes sure that the Authorization (or Proxy-Authorization) header is
formatted for Basic authentication. Finally, after isolating the user and password from the header, it
populates the ap_auth_type slot in the request record with Basic . For the first and last parts of this
process, mod_perl offers an API. $r->auth_type returns the configured authentication type for the
current request - whatever was set via the AuthType configuration directive. $r->ap_auth_type
populates the ap_auth_type slot in the request record, which should be done after it has been confirmed
that the request is indeed using Basic authentication. (Note: $r->ap_auth_type was
$r->connection->auth_type in the mod_perl 1.0 API.)

Once we know that we have the username and the password supplied by the client, we can proceed with
the authentication. Our authentication algorithm is unusual. Instead of validating the username/password
pair against a password file, we simply check that the string built from these two items plus a single space
is SECRET_LENGTH long (14 in our example). So for example the pair mod_perl/rules authenticates
correctly, whereas secret/password does not, because the latter pair will make a string of 15 characters. Of
course this is not a strong authentication scheme and you shouldn’t use it for serious things, but it’s fun to
play with. Most authentication validations simply verify the username/password against a database of
valid pairs, usually this requires the password to be encrypted first, since storing passwords in clear is a
bad idea.

Finally if our authentication fails the handler calls note_basic_auth_failure() and returns
Apache::HTTP_UNAUTHORIZED, which sets the proper HTTP response headers that tell the client that
its user that the authentication has failed and the credentials should be supplied again.

It’s not enough to enable this handler for the authentication to work. You have to tell Apache what authen-
tication scheme to use (Basic or Digest), which is specified by the AuthType directive, and you
should also supply the AuthName -- the authentication realm, which is really just a string that the client
usually uses as a title in the pop-up box, where the username and the password are inserted. Finally the
Require directive is needed to specify which usernames are allowed to authenticate. If you set it to
valid-user any username will do.

Here is the whole configuration section that requires users to authenticate before they are allowed to run
the registry scripts from /perl/:

8913 Nov 2004

7.2.7 PerlAuthenHandlerHTTP Handlers

 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAuthenHandler MyApache::SecretLengthAuth
 Options +ExecCGI

 AuthType Basic
 AuthName "The Gate"
 Require valid-user
 </Location>

7.2.8 PerlAuthzHandler

The auth_checker (authz) phase is used for authorization control. This phase requires a successful authen-
tication from the previous phase, because a username is needed in order to decide whether a user is autho-
rized to access the requested resource.

As this phase is tightly connected to the authentication phase, the handlers registered for this phase are
only called when the requested resource is password protected, similar to the auth phase. The handler is
expected to return Apache::DECLINED to defer the decision, Apache::OK to indicate its acceptance
of the user’s authorization, or Apache::HTTP_UNAUTHORIZED to indicate that the user is not autho-
rized to access the requested document.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Here is the MyApache::SecretResourceAuthz handler which grants access to certain resources
only to certain users who have already properly authenticated:

 file:MyApache/SecretResourceAuthz.pm

 package MyApache::SecretResourceAuthz;

 use strict;
 use warnings;

 use Apache::Access ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => qw(OK HTTP_UNAUTHORIZED);

 my %protected = (
 ’admin’ => [’gozer’],
 ’report’ => [qw(gozer boss)],
);

 sub handler {
 my $r = shift;

 my $user = $r->user;
 if ($user) {
 my($section) = $r->uri =~ m|^/company/(\w+)/|;

13 Nov 200490

Philippe M. Chiasson7.2.8 PerlAuthzHandler

 if (defined $section && exists $protected{$section}) {
 my $users = $protected{$section};
 return Apache::OK if grep { $_ eq $user } @$users;
 }
 else {
 return Apache::OK;
 }
 }

 $r->note_basic_auth_failure;
 return Apache::HTTP_UNAUTHORIZED;
 }

 1;

This authorization handler is very similar to the authentication handler from the previous section. Here we
rely on the previous phase to get users authenticated, and now as we have the username we can make deci-
sions whether to let the user access the resource it has asked for or not. In our example we have a simple
hash which maps which users are allowed to access what resources. So for example anything under
/company/admin/ can be accessed only by the user gozer, /company/report/ can be accessed by users gozer
and boss, whereas any other resources under /company/ can be accessed by everybody who has reached so
far. If for some reason we don’t get the username, or the user is not authorized to access the resource, the
handler does the same thing as it does when the authentication fails, i.e, calls:

 $r->note_basic_auth_failure;
 return Apache::HTTP_UNAUTHORIZED;

The configuration is similar to the one in the previous section, this time we just add the PerlAu-
thzHandler setting. The rest doesn’t change.

 Alias /company/ /home/httpd/httpd-2.0/perl/
 <Location /company/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAuthenHandler MyApache::SecretLengthAuth
 PerlAuthzHandler MyApache::SecretResourceAuthz
 Options +ExecCGI

 AuthType Basic
 AuthName "The Secret Gate"
 Require valid-user
 </Location>

And if you want to run the authentication and authorization for the whole site, simply add:

 <Location />
 PerlAuthenHandler MyApache::SecretLengthAuth
 PerlAuthzHandler MyApache::SecretResourceAuthz
 AuthType Basic
 AuthName "The Secret Gate"
 Require valid-user
 </Location>

9113 Nov 2004

7.2.8 PerlAuthzHandlerHTTP Handlers

7.2.9 PerlTypeHandler

The type_checker phase is used to set the response MIME type (Content-type) and sometimes other
bits of document type information like the document language.

For example mod_autoindex , which performs automatic directory indexing, uses this phase to map the
filename extensions to the corresponding icons which will be later used in the listing of files.

Of course later phases may override the mime type set in this phase.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

The most important thing to remember when overriding the default type_checker handler, which is usually
the mod_mime handler, is that you have to set the handler that will take care of the response phase and the
response callback function or the code won’t work. mod_mime does that based on SetHandler and
AddHandler directives, and file extensions. So if you want the content handler to be run by mod_perl,
set either:

 $r->handler(’perl-script’);
 $r->set_handlers(PerlResponseHandler => \&handler);

or:

 $r->handler(’modperl’);
 $r->set_handlers(PerlResponseHandler => \&handler);

depending on which type of response handler is wanted.

Writing a PerlTypeHandler handler which sets the content-type value and returns
Apache::DECLINED so that the default handler will do the rest of the work, is not a good idea, because
mod_mime will probably override this and other settings.

Therefore it’s the easiest to leave this stage alone and do any desired settings in the fixups phase.

7.2.10 PerlFixupHandler

The fixups phase is happening just before the content handling phase. It gives the last chance to do things
before the response is generated. For example in this phase mod_env populates the environment with
variables configured with SetEnv and PassEnv directives.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

The following fixup handler example tells Apache at run time which handler and callback should be used
to process the request based on the file extension of the request’s URI.

13 Nov 200492

Philippe M. Chiasson7.2.9 PerlTypeHandler

 file:MyApache/FileExtDispatch.pm

 package MyApache::FileExtDispatch;

 use strict;
 use warnings;

 use Apache::RequestIO ();
 use Apache::RequestRec ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => ’OK’;

 use constant HANDLER => 0;
 use constant CALLBACK => 1;

 my %exts = (
 cgi => [’perl-script’, \&cgi_handler],
 pl => [’modperl’, \&pl_handler],
 tt => [’perl-script’, \&tt_handler],
 txt => [’default-handler’, undef],
);

 sub handler {
 my $r = shift;

 my($ext) = $r->uri =~ /\.(\w+)$/;
 $ext = ’txt’ unless defined $ext and exists $exts{$ext};

 $r->handler($exts{$ext}->[HANDLER]);

 if (defined $exts{$ext}->[CALLBACK]) {
 $r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);
 }

 return Apache::OK;
 }

 sub cgi_handler { content_handler($_[0], ’cgi’) }
 sub pl_handler { content_handler($_[0], ’pl’) }

 sub tt_handler { content_handler($_[0], ’tt’) }

 sub content_handler {
 my($r, $type) = @_;

 $r->content_type(’text/plain’);
 $r->print("A handler of type ’$type’ was called");

 return Apache::OK;
 }

 1;

9313 Nov 2004

7.2.10 PerlFixupHandlerHTTP Handlers

In the example we have used the following mapping.

 my %exts = (
 cgi => [’perl-script’, \&cgi_handler],
 pl => [’modperl’, \&pl_handler],
 tt => [’perl-script’, \&tt_handler],
 txt => [’default-handler’, undef],
);

So that .cgi requests will be handled by the perl-script handler and the cgi_handler() callback,
.pl requests by modperl and pl_handler() , .tt (template toolkit) by perl-script and the
tt_handler() , finally .txt request by the default-handler handler, which requires no callback.

Moreover the handler assumes that if the request’s URI has no file extension or it does, but it’s not in its
mapping, the default-handler will be used, as if the txt extension was used.

After doing the mapping, the handler assigns the handler:

 $r->handler($exts{$ext}->[HANDLER]);

and the callback if needed:

 if (defined $exts{$ext}->[CALLBACK]) {
 $r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);
 }

In this simple example the callback functions don’t do much but calling the same content handler which
simply prints the name of the extension if handled by mod_perl, otherwise Apache will serve the other
files using the default handler. In real world you will use callbacks to real content handlers that do real
things.

Here is how this handler is configured:

 Alias /dispatch/ /home/httpd/httpd-2.0/htdocs/
 <Location /dispatch/>
 PerlFixupHandler MyApache::FileExtDispatch
 </Location>

Notice that there is no need to specify anything, but the fixup handler. It applies the rest of the settings
dynamically at run-time.

7.2.11 PerlResponseHandler

The handler (response) phase is used for generating the response. This is arguably the most important
phase and most of the existing Apache modules do most of their work at this phase.

This is the only phase that requires two directives under mod_perl. For example:

 <Location /perl>
 SetHandler perl-script
 PerlResponseHandler MyApache::WorldDomination
 </Location>

13 Nov 200494

Philippe M. Chiasson7.2.11 PerlResponseHandler

SetHandler set to perl-script or modperl tells Apache that mod_perl is going to handle the
response generation. PerlResponseHandler tells mod_perl which callback is going to do the job.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Most of the Apache:: modules on CPAN are dealing with this phase. In fact most of the developers
spend the majority of their time working on handlers that generate response content.

Let’s write a simple response handler, that just generates some content. This time let’s do something more
interesting than printing "Hello world". Let’s write a handler that prints itself:

 file:MyApache/Deparse.pm

 package MyApache::Deparse;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use B::Deparse ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->print(’sub handler ’, B::Deparse->new->coderef2text(\&handler));

 return Apache::OK;
 }
 1;

To enable this handler add to httpd.conf:

 <Location /deparse>
 SetHandler modperl
 PerlResponseHandler MyApache::Deparse
 </Location>

Now when the server is restarted and we issue a request to http://localhost/deparse we get the following
response:

9513 Nov 2004

7.2.11 PerlResponseHandlerHTTP Handlers

http://localhost/deparse

 sub handler {
 package MyApache::Deparse;
 use warnings;
 use strict ’refs’;
 my $r = shift @_;
 $r->content_type(’text/plain’);
 $r->print(’sub handler ’, ’B::Deparse’->new->coderef2text(\&handler));
 return 0;
 }

If you compare it to the source code, it’s pretty much the same code. B::Deparse is fun to play with!

7.2.12 PerlLogHandler

The log_transaction phase happens no matter how the previous phases have ended up. If one of the earlier
phases has aborted a request, e.g., failed authentication or 404 (file not found) errors, the rest of the phases
up to and including the response phases are skipped. But this phase is always executed.

By this phase all the information about the request and the response is known, therefore the logging
handlers usually record this information in various ways (e.g., logging to a flat file or a database).

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Imagine a situation where you have to log requests into individual files, one per user. Assuming that all
requests start with /users/username/, so it’s easy to categorize requests by the second URI path compo-
nent. Here is the log handler that does that:

 file:MyApache/LogPerUser.pm

 package MyApache::LogPerUser;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::Connection ();
 use Fcntl qw(:flock);

 use Apache::Const -compile => qw(OK DECLINED);

 sub handler {
 my $r = shift;

 my($username) = $r->uri =~ m|^/users/([^/]+)|;
 return Apache::DECLINED unless defined $username;

 my $entry = sprintf qq(%s [%s] "%s" %d %d\n),
 $r->connection->remote_ip, scalar(localtime),
 $r->uri, $r->status, $r->bytes_sent;

 my $log_path = catfile Apache::ServerUtil::server_root,

13 Nov 200496

Philippe M. Chiasson7.2.12 PerlLogHandler

 "logs", "$username.log";
 open my $fh, ">>$log_path" or die "can’t open $log_path: $!";
 flock $fh, LOCK_EX;
 print $fh $entry;
 close $fh;

 return Apache::OK;
 }
 1;

First the handler tries to figure out what username the request is issued for, if it fails to match the URI, it
simply returns Apache::DECLINED , letting other log handlers to do the logging. Though it could return
Apache::OK since all other log handlers will be run anyway.

Next it builds the log entry, similar to the default access_log entry. It’s comprised of remote IP, the current
time, the uri, the return status and how many bytes were sent to the client as a response body.

Finally the handler appends this entry to the log file for the user the request was issued for. Usually it’s
safe to append short strings to the file without being afraid of messing up the file, when two files attempt
to write at the same time, but just to be on the safe side the handler exclusively locks the file before
performing the writing.

To configure the handler simply enable the module with the PerlLogHandler directive, inside the
wanted section, which was /users/ in our example:

 <Location /users/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlLogHandler MyApache::LogPerUser
 Options +ExecCGI
 </Location>

After restarting the server and issuing requests to the following URIs:

 http://localhost/users/gozer/test.pl
 http://localhost/users/eric/test.pl
 http://localhost/users/gozer/date.pl

The MyApache::LogPerUser handler will append to logs/gozer.log:

 127.0.0.1 [Sat Aug 31 01:50:38 2002] "/users/gozer/test.pl" 200 8
 127.0.0.1 [Sat Aug 31 01:50:40 2002] "/users/gozer/date.pl" 200 44

and to logs/eric.log:

 127.0.0.1 [Sat Aug 31 01:50:39 2002] "/users/eric/test.pl" 200 8

9713 Nov 2004

7.2.12 PerlLogHandlerHTTP Handlers

7.2.13 PerlCleanupHandler

There is no cleanup Apache phase, it exists only inside mod_perl. It is used to execute some code immedi-
ately after the request has been served (the client went away) and before the request object is destroyed.

There are several usages for this use phase. The obvious one is to run a cleanup code, for example remov-
ing temporarily created files. The less obvious is to use this phase instead of PerlLogHandler if the
logging operation is time consuming. This approach allows to free the client as soon as the response is
sent.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

There are two ways to register and run cleanup handlers:

1. Using the PerlCleanupHandler phase

 PerlCleanupHandler MyApache::Cleanup

or:

 $r->push_handlers(PerlCleanupHandler => \&cleanup);

This method is identical to all other handlers.

In this technique the cleanup() callback accepts $r as its only argument.

2. Using cleanup_register() acting on the request object’s pool

Since a request object pool is destroyed at the end of each request, we can register a cleanup callback
which will be executed just before the pool is destroyed. For example:

 $r->pool->cleanup_register(\&cleanup, $arg);

The important difference from using the PerlCleanupHandler handler, is that here you can pass
an optional arbitrary argument to the callback function, and no $r argument is passed by default.
Therefore if you need to pass any data other than $r you may want to use this technique.

Here is an example where the cleanup handler is used to delete a temporary file. The response handler is
running ls -l and stores the output in temporary file, which is then used by $r->sendfile to send
the file’s contents. We use push_handlers() to push PerlCleanupHandler to unlink the file at
the end of the request.

 #file:MyApache/Cleanup1.pm
 #-------------------------
 package MyApache::Cleanup1;

 use strict;
 use warnings FATAL => ’all’;

13 Nov 200498

Philippe M. Chiasson7.2.13 PerlCleanupHandler

 use File::Spec::Functions qw(catfile);

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’SUCCESS’;

 my $file = catfile "/tmp", "data";

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);

 local @ENV{qw(PATH BASH_ENV)};
 qx(/bin/ls -l > $file);

 my $status = $r->sendfile($file);
 die "sendfile has failed" unless $status == APR::SUCCESS;

 $r->push_handlers(PerlCleanupHandler => \&cleanup);

 return Apache::OK;
 }

 sub cleanup {
 my $r = shift;

 die "Can’t find file: $file" unless -e $file;
 unlink $file or die "failed to unlink $file";

 return Apache::OK;
 }
 1;

Next we add the following configuration:

 <Location /cleanup1>
 SetHandler modperl
 PerlResponseHandler MyApache::Cleanup1
 </Location>

Now when a request to /cleanup1 is made, the contents of the current directory will be printed and once
the request is over the temporary file is deleted.

This response handler has a problem of running in a multi-process environment, since it uses the same file,
and several processes may try to read/write/delete that file at the same time, wrecking havoc. We could
have appended the process id $$ to the file’s name, but remember that mod_perl 2.0 code may run in the
threaded environment, meaning that there will be many threads running in the same process and the $$
trick won’t work any longer. Therefore one really has to use this code to create unique, but predictable,
file names across threads and processes:

9913 Nov 2004

7.2.13 PerlCleanupHandlerHTTP Handlers

 sub unique_id {
 require Apache::MPM;
 require APR::OS;
 return Apache::MPM->is_threaded
 ? "$$." . ${ APR::OS::thread_current() }
 : $$;
 }

In the threaded environment it will return a string containing the process ID, followed by a thread ID. In
the non-threaded environment only the process ID will be returned. However since it gives us a
predictable string, they may still be a non-satisfactory solution. Therefore we need to use a random string.
We can either either Perl’s rand , some CPAN module or the APR’s APR::UUID :

 sub unique_id {
 require APR::UUID;
 return APR::UUID->new->format;
 }

Now the problem is how do we tell the cleanup handler what file should be cleaned up? We could have
stored it in the $r->notes table in the response handler and then retrieve it in the cleanup handler.
However there is a better way - as mentioned earlier, we can register a callback for request pool cleanup,
and when using this method we can pass an arbitrary argument to it. Therefore in our case we choose to
pass the file name, based on random string. Here is a better version of the response and cleanup handlers,
that uses this technique:

 #file:MyApache/Cleanup2.pm
 #-------------------------
 package MyApache::Cleanup2;

 use strict;
 use warnings FATAL => ’all’;

 use File::Spec::Functions qw(catfile);

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();
 use APR::UUID ();
 use APR::Pool ();

 use Apache::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’SUCCESS’;

 my $file_base = catfile "/tmp", "data-";

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 my $file = $file_base . APR::UUID->new->format;

 local @ENV{qw(PATH BASH_ENV)};
 qx(/bin/ls -l > $file);

 my $status = $r->sendfile($file);

13 Nov 2004100

Philippe M. Chiasson7.2.13 PerlCleanupHandler

 die "sendfile has failed" unless $status == APR::SUCCESS;

 $r->pool->cleanup_register(\&cleanup, $file);

 return Apache::OK;
 }

 sub cleanup {
 my $file = shift;

 die "Can’t find file: $file" unless -e $file;
 unlink $file or die "failed to unlink $file";

 return Apache::OK;
 }
 1;

Similarly to the first handler, we add the configuration:

 <Location /cleanup2>
 SetHandler modperl
 PerlResponseHandler MyApache::Cleanup2
 </Location>

And now when requesting /cleanup2 we still get the same output -- the listing of the current directory --
but this time this code will work correctly in the multi-processes/multi-threaded environment and tempo-
rary files get cleaned up as well.

10113 Nov 2004

7.2.13 PerlCleanupHandlerHTTP Handlers

8 mod_perl 1.0 to mod_perl 2.0 Migration

13 Nov 2004102

Philippe M. Chiasson8 mod_perl 1.0 to mod_perl 2.0 Migration

8.1 Description
This chapter explains how to migrate from mod_perl 1.0 to mod_perl 2.0.

8.2 Migrating from mod_perl 1.0 to mod_perl 2.0
The following sections discuss what should be done in order to migrate services from mod_perl 1.0 to 2.0
and if possible making the new services based on mod_perl 2.0 back compatible with mod_perl 1.0.

Several configuration directives were renamed or removed. Several APIs have changed, renamed,
removed, or moved to new packages. Certain functions while staying exactly the same as in mod_perl 1.0,
now reside in different packages. Before using them you need to find out and load those new packages
containing them.

Since as of this writing mod_perl 2.0 wasn’t released yet, it’s possible that certain things have changed
after this tutorial has been published. If something doesn’t work as explained here, please refer to the
documents in the mod_perl distribution or the online version at http://perl.apache.org/docs/2.0/ for the
updated documentation.

8.3 The Shortest Migration Path
mod_perl 2.0 provides two backwards-compatibility layers: one for the configuration files and the other
for the code. If you are concerned to preserve the backwards compatibility with mod_perl 1.0, or simply
want to try your services under mod_perl 2.0, simply enable the code compatibility layer by adding:

 use Apache2;
 use Apache::compat;

at the top of your startup file. The configuration backwards-compatibility is enabled by default.

8.4 Migrating Configuration Files
To migrate the configuration files to the mod_perl 2.0 syntax, you may need to do certain adjustments.
Several configuration directives are deprecated in 2.0, but still available for backwards compatibility with
mod_perl 1.0. If you don’t need the backwards compatibility consider using the directives that have
replaced them.

8.4.1 PerlHandler

PerlHandler was replaced with PerlResponseHandler .

10313 Nov 2004

8.1 Descriptionmod_perl 1.0 to mod_perl 2.0 Migration

http://perl.apache.org/docs/2.0/

8.4.2 PerlSendHeader

PerlSendHeader was replaced with PerlOptions +/-ParseHeaders directive.

 PerlSendHeader On => PerlOptions +ParseHeaders
 PerlSendHeader Off => PerlOptions -ParseHeaders

8.4.3 PerlSetupEnv

PerlSetupEnv was replaced with PerlOptions +/-SetupEnv directive.

 PerlSetupEnv On => PerlOptions +SetupEnv
 PerlSetupEnv Off => PerlOptions -SetupEnv

8.4.4 PerlTaintCheck

The taint mode now can be turned on with:

 PerlSwitches -T

It’s disabled by default. You cannot disable it once it’s enabled.

The default is Off. You cannot turn it Off once it’s turned On.

8.4.5 PerlWarn

Warnings now can be enabled globally with:

 PerlSwitches -w

8.4.6 PerlFreshRestart

PerlFreshRestart is a mod_perl 1.0 legacy and doesn’t exist in mod_perl 2.0. A full tear-down and
startup of interpreters is done on restart.

If you need to use the same httpd.conf for 1.0 and 2.0, use:

 <IfDefine !MODPERL2>
 PerlFreshRestart
 </IfDefine>

8.5 Code Porting
mod_perl 2.0 is trying hard to be back compatible with mod_perl 1.0. However some things (mostly APIs)
have been changed. In order to gain a complete compatibility with 1.0 while running under 2.0, you should
load the compatibility module as early as possible:

13 Nov 2004104

Philippe M. Chiasson8.5 Code Porting

 use Apache::compat;

at the server startup. And unless there are forgotten things or bugs, your code should work without any
changes under 2.0 series.

However, unless you want to keep the 1.0 compatibility, you should try to remove the compatibility layer
and adjust your code to work under 2.0 without it. You want to do it mainly for the performance improve-
ment. The online mod_perl documentation includes a document
(http://perl.apache.org/docs/2.0/user/compat/compat.html) that explains what APIs have changed and
what new APIs should be used instead.

If you have mod_perl 1.0 and 2.0 installed on the same system and the two use the same perl libraries
directory (e.g. /usr/lib/perl5), to use mod_perl 2.0 make sure to load first the Apache2 module which will
perform the necessary adjustments to @INC.

 use Apache2; # if you have 1.0 and 2.0 installed
 use Apache::compat;

So if before loading Apache2.pm the @INC array consisted of:

 /home/gozer/perl/ithread/lib/5.8.0/i686-linux-thread-multi
 /home/gozer/perl/ithread/lib/5.8.0
 /home/gozer/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi
 /home/gozer/perl/ithread/lib/site_perl/5.8.0
 /home/gozer/perl/ithread/lib/site_perl
 .

It will now look as:

 /home/gozer/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi/Apache2
 /home/gozer/perl/ithread/lib/5.8.0/i686-linux-thread-multi
 /home/gozer/perl/ithread/lib/5.8.0
 /home/gozer/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi
 /home/gozer/perl/ithread/lib/site_perl/5.8.0
 /home/gozer/perl/ithread/lib/site_perl
 .

Notice that a new directory was prepended to the search path, so if for example the code attempts to load
Apache::RequestRec and there are two versions of this module undef
/home/gozer/perl/ithread/lib/site_perl/:

 5.8.0/i686-linux-thread-multi/Apache/RequestRec.pm
 5.8.0/i686-linux-thread-multi/Apache2/Apache/RequestRec.pm

The mod_perl 2.0 version will be loaded first, because the directory
5.8.0/i686-linux-thread-multi/Apache2 is coming before the directory 5.8.0/i686-linux-thread-multi in
@INC.

10513 Nov 2004

8.5 Code Portingmod_perl 1.0 to mod_perl 2.0 Migration

http://perl.apache.org/docs/2.0/user/compat/compat.html

8.5.1 Finding Which Modules Need To Be Loaded

mod_perl 2.0 splits functionality across many more modules and you have to load these modules before
the methods that live in them can be used. So the first step is to figure out which these modules are and
use() them.

The ModPerl::MethodLookup provided with mod_perl 2.0 allows you to find out which module
contains the functionality you are looking for. Simply provide it with the name of the mod_perl 1.0
method that has moved to a new module, and it will tell you what the module is.

For example, let’s say we have a mod_perl 1.0 code snippet:

 $r->content_type(’text/plain’);
 $r->print("Hello cruel world!");

If we run this, mod_perl 2.0 will complain that the method content_type() can’t be found. So we use
ModPerl::MethodLookup to figure out which module provides this method. We can just run this
from the command line:

 % perl -MApache2 -MModPerl::MethodLookup -e print_method content_type

This prints:

 to use method ’content_type’ add:
 use Apache::RequestRec ();

We do what it says and add this use() statement to our code, restart our server (unless we’re using
Apache::Reload), and mod_perl will no longer complain about this particular method.

Since you may need to use this technique quite often you may want to create a handy alias for this tech-
nique. For example, C-style shell users can do:

 % alias lookup "perl -MApache2 -MModPerl::MethodLookup -e print_method"

For Bash-style shell users:

 % alias lookup="perl -MApache2 -MModPerl::MethodLookup -e print_method"

Once defined the last command line lookup can be accomplished with:

 % lookup content_type

ModPerl::MethodLookup also provides helper functions for finding which methods are
defined in a given module, or which methods can be invoked on a given
object.

13 Nov 2004106

Philippe M. Chiasson8.5.1 Finding Which Modules Need To Be Loaded

8.6 ModPerl::Registry Family
In mod_perl 2.0, Apache::Registry and friends (Apache::PerlRun , Apache::RegistryNG ,
etc) have migrated into the ModPerl:: namespace. The new family is based on the idea of
Apache::RegistryNG from mod_perl 1.0, where you can customize pretty much all the functionality
by providing your own hooks. The functionality of the modules Apache::Registry ,
Apache::RegistryBB and Apache::PerlRun hasn’t changed from the user’s perspective. All
these modules are derived from the ModPerl::RegistryCooker class. So if you want to change the
functionality of any of the existing sub-classes, or want to "cook" your own registry module it can be done
easily. Refer to the ModPerl::RegistryCooker manpage for more information.

Here is a typical registry section configuration in mod_perl 2.0:

 Alias /perl/ /home/httpd/perl/
 <Location /perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
 PerlOptions +ParseHeaders
 </Location>

As we have explained earlier, the ParseHeaders option is needed if the headers are being sent via
print() (i.e. without using mod_perl API) and comes as a replacement for the PerlSendHeader option
in mod_perl 1.0.

Here is a simple registry script that prints the environment variables.

 file:print_env.pl

 print "Content-type: text/plain\n\n";
 for (sort keys %ENV){
 print "$_ => $ENV{$_}\n";
 }

Save the file in /home/httpd/perl/print_env.pl and make it executable:

 panic% chmod 0700 /home/gozer/modperl/mod_perl_rules1.pl

Now issue a request to http://localhost/perl/print_env.pl and you should see all the environment variables
printed out.

The only change for registry scripts from mod_perl 1.0 is that Perl doesn’t chdir() ’s into the script’s
directory before executing it. This is because chdir() is not a thread-safe function, and as you’ve
learned by now, mod_perl 2.0 should run properly in the threaded environment. To accommodate for this
change, the directory of the script is being pushed as the first element in @INC for the duration of the
script’s execution, so relative to the script’s directory require() calls will succeed. This however
doesn’t solve the problem for other operations like file open() calls, when a relative to the script’s direc-
tory path is used. In these cases the code needs to be changed to figure out the full path to the file at run
time.

10713 Nov 2004

8.6 ModPerl::Registry Familymod_perl 1.0 to mod_perl 2.0 Migration

http://localhost/perl/print_env.pl

8.7 Method Handlers
In mod_perl 1.0 the method handlers could be specified by using the ($$) prototype:

 package Bird;
 @ISA = qw(Eagle);

 sub handler ($$) {
 my($class, $r) = @_;
 ...;
 }

Starting from Perl version 5.6, you can use subroutine attributes, and that’s what mod_perl 2.0 does
instead of conventional prototypes:

 package Bird;
 @ISA = qw(Eagle);

 sub handler : method {
 my($class, $r) = @_;
 ...;
 }

See the attributes manpage.

mod_perl 2.0 doesn’t support the ($$) prototypes, mainly because several callbacks in 2.0 have more
arguments than $r , so the ($$) prototype doesn’t make sense anymore. Therefore if you want your code
to work with both mod_perl generations, you should use the subroutine attributes.

8.8 Apache::StatINC Replacement
Apache::StatINC has been replaced by Apache::Reload , which works for both mod_perl genera-
tions. To migrate to Apache::Reload simply replace:

 PerlInitHandler Apache::StatINC

with:

 PerlInitHandler Apache::Reload

However Apache::Reload provides an extra functionality, covered in the module’s manpage.

13 Nov 2004108

Philippe M. Chiasson8.7 Method Handlers

9 That’s all folks!

10913 Nov 2004

9 That’s all folks!That’s all folks!

9.1 Thanks
Thanks to TicketMaster for sponsoring some of my work on mod_perl

9.2 References
mod_perl 2.0 information can be found at:

 http://perl.apache.org/docs/2.0/

Further Questions?

Ask at modperl@perl.apache.org

9.3 A Shameless Plug

13 Nov 2004110

Philippe M. Chiasson9.1 Thanks

11113 Nov 2004

9.3 A Shameless PlugThat’s all folks!

Table of Contents:
........... 1Tutorial Handouts: mod_perl 2.0 By Example
............ 2Getting Your Feet Wet With mod_perl 2.0
........... 21 Getting Your Feet Wet With mod_perl 2.0
.................. 31.1 Description
................. 31.2 Prerequisites
........... 31.2.1 Downloading Stable Release Sources
........... 41.2.2 Getting Bleeding Edge CVS Sources
.......... 51.2.3 Configuring and Installing Prerequisites
............... 51.3 mod_perl Installation
................. 61.4 Configuration
.............. 61.5 Server Launch and Shutdown
................. 71.6 Registry Scripts
................ 71.7 Handler Modules
................... 9New Concepts
.................. 92 New Concepts
.................. 102.1 Description
.................. 102.2 Exceptions
................. 122.3 Bucket Brigades
............... 14Introducing mod_perl Handlers
.............. 143 Introducing mod_perl Handlers
.................. 153.1 Description
................ 153.2 Handler Anatomy
.............. 163.3 mod_perl Handler Categories
................ 163.4 Stacked Handlers
................ 18Server Life Cycle Handlers
............... 184 Server Life Cycle Handlers
.................. 194.1 Description
................ 194.2 Server Life Cycle
........... 204.2.1 Startup Phases Demonstration Module
.............. 224.2.2 PerlOpenLogsHandler
.............. 244.2.3 PerlPostConfigHandler
............... 244.2.4 PerlChildInitHandler
.............. 254.2.5 PerlChildExitHandler
.................. 26Protocol Handlers
................. 265 Protocol Handlers
.................. 275.1 Description
............... 275.2 Connection Cycle Phases
............. 285.2.1 PerlPreConnectionHandler
............ 295.2.2 PerlProcessConnectionHandler
........... 305.2.2.1 Socket-based Protocol Module
......... 325.2.2.2 Bucket Brigades-based Protocol Module
................ 37Input and Output Filters
................ 376 Input and Output Filters
.................. 386.1 Description

i13 Nov 2004

Table of Contents:That’s all folks!

.................. 386.2 Your First Filter

................. 406.3 I/O Filtering Concepts

............ 406.3.1 Two Methods for Manipulating Data

........... 416.3.2 HTTP Request Versus Connection Filters

............ 416.3.3 Multiple Invocations of Filter Handlers

................. 456.3.4 Blocking Calls

........... 486.4 mod_perl Filters Declaration and Configuration

................ 496.4.1 Filter Priority Types

................ 496.4.2 PerlInputFilterHandler

............... 496.4.3 PerlOutputFilterHandler

............... 506.4.4 PerlSetInputFilter

.............. 516.4.5 PerlSetOutputFilter

............ 536.4.6 HTTP Request vs. Connection Filters

............... 546.4.7 Filter Initialization Phase

.................. 566.5 All-in-One Filter

................... 636.6 Input Filters

............... 636.6.1 Connection Input Filters

.............. 676.6.2 HTTP Request Input Filters

............. 676.6.3 Bucket Brigade-based Input Filters

.............. 696.6.4 Stream-oriented Input Filters

................... 706.7 Output Filters

............... 706.7.1 Connection Output Filters

.............. 706.7.2 HTTP Request Output Filters

.............. 716.7.3 Stream-oriented Output Filters

............. 736.7.4 Bucket Brigade-based Output Filters

.................... 75HTTP Handlers

................... 757 HTTP Handlers

................... 767.1 Description

............... 767.2 HTTP Request Cycle Phases

.............. 787.2.1 PerlPostReadRequestHandler

................. 797.2.2 PerlTransHandler

............... 817.2.3 PerlMapToStorageHandler

............... 827.2.4 PerlHeaderParserHandler

................. 867.2.5 PerlInitHandler

................ 877.2.6 PerlAccessHandler

................ 887.2.7 PerlAuthenHandler

................. 907.2.8 PerlAuthzHandler

................. 927.2.9 PerlTypeHandler

................ 927.2.10 PerlFixupHandler

................ 947.2.11 PerlResponseHandler

................. 967.2.12 PerlLogHandler

................ 987.2.13 PerlCleanupHandler

.............. 102mod_perl 1.0 to mod_perl 2.0 Migration

............. 1028 mod_perl 1.0 to mod_perl 2.0 Migration

................... 1038.1 Description

........... 1038.2 Migrating from mod_perl 1.0 to mod_perl 2.0

............... 1038.3 The Shortest Migration Path

13 Nov 2004ii

Table of Contents:

............... 1038.4 Migrating Configuration Files

................. 1038.4.1 PerlHandler

................ 1048.4.2 PerlSendHeader

................. 1048.4.3 PerlSetupEnv

................ 1048.4.4 PerlTaintCheck

.................. 1048.4.5 PerlWarn

............... 1048.4.6 PerlFreshRestart

................... 1048.5 Code Porting

........... 1068.5.1 Finding Which Modules Need To Be Loaded

.............. 1078.6 ModPerl::Registry Family

.................. 1088.7 Method Handlers

.............. 1088.8 Apache::StatINC Replacement

.................... 109That’s all folks!

................... 1099 That’s all folks!

.................... 1109.1 Thanks

................... 1109.2 References

.................. 1109.3 A Shameless Plug

iii13 Nov 2004

Table of Contents:That’s all folks!

	1€€Getting Your Feet Wet With mod_perl 2.0
	1.1€€Description
	1.2€€Prerequisites
	1.2.1€€Downloading Stable Release Sources
	1.2.2€€Getting Bleeding Edge CVS Sources
	1.2.3€€Configuring and Installing Prerequisites

	1.3€€mod_perl Installation
	1.4€€Configuration
	1.5€€Server Launch and Shutdown
	1.6€€Registry Scripts
	1.7€€Handler Modules

	2€€New Concepts
	2.1€€Description
	2.2€€Exceptions
	2.3€€Bucket Brigades

	3€€Introducing mod_perl Handlers
	3.1€€Description
	3.2€€Handler Anatomy
	3.3€€mod_perl Handler Categories
	3.4€€Stacked Handlers

	4€€Server Life Cycle Handlers
	4.1€€Description
	4.2€€Server Life Cycle
	4.2.1€€Startup Phases Demonstration Module
	4.2.2€€PerlOpenLogsHandler
	4.2.3€€PerlPostConfigHandler
	4.2.4€€PerlChildInitHandler
	4.2.5€€PerlChildExitHandler

	5€€Protocol Handlers
	5.1€€Description
	5.2€€Connection Cycle Phases
	5.2.1€€PerlPreConnectionHandler
	5.2.2€€PerlProcessConnectionHandler
	5.2.2.1€€Socket-based Protocol Module
	5.2.2.2€€Bucket Brigades-based Protocol Module

	6€€Input and Output Filters
	6.1€€Description
	6.2€€Your First Filter
	6.3€€I/O Filtering Concepts
	6.3.1€€Two Methods for Manipulating Data
	6.3.2€€HTTP Request Versus Connection Filters
	6.3.3€€Multiple Invocations of Filter Handlers
	6.3.4€€Blocking Calls

	6.4€€mod_perl Filters Declaration and Configuration
	6.4.1€€Filter Priority Types
	6.4.2€€PerlInputFilterHandler
	6.4.3€€PerlOutputFilterHandler
	6.4.4€€PerlSetInputFilter
	6.4.5€€PerlSetOutputFilter
	6.4.6€€HTTP Request vs. Connection Filters
	6.4.7€€Filter Initialization Phase

	6.5€€All-in-One Filter
	6.6€€Input Filters
	6.6.1€€Connection Input Filters
	6.6.2€€HTTP Request Input Filters
	6.6.3€€Bucket Brigade-based Input Filters
	6.6.4€€Stream-oriented Input Filters

	6.7€€Output Filters
	6.7.1€€Connection Output Filters
	6.7.2€€HTTP Request Output Filters
	6.7.3€€Stream-oriented Output Filters
	6.7.4€€Bucket Brigade-based Output Filters

	7€€HTTP Handlers
	7.1€€Description
	7.2€€HTTP Request Cycle Phases
	7.2.1€€PerlPostReadRequestHandler
	7.2.2€€PerlTransHandler
	7.2.3€€PerlMapToStorageHandler
	7.2.4€€PerlHeaderParserHandler
	7.2.5€€PerlInitHandler
	7.2.6€€PerlAccessHandler
	7.2.7€€PerlAuthenHandler
	7.2.8€€PerlAuthzHandler
	7.2.9€€PerlTypeHandler
	7.2.10€€PerlFixupHandler
	7.2.11€€PerlResponseHandler
	7.2.12€€PerlLogHandler
	7.2.13€€PerlCleanupHandler

	8€€mod_perl 1.0 to mod_perl 2.0 Migration
	8.1€€Description
	8.2€€Migrating from mod_perl 1.0 to mod_perl 2.0
	8.3€€The Shortest Migration Path
	8.4€€Migrating Configuration Files
	8.4.1€€PerlHandler
	8.4.2€€PerlSendHeader
	8.4.3€€PerlSetupEnv
	8.4.4€€PerlTaintCheck
	8.4.5€€PerlWarn
	8.4.6€€PerlFreshRestart

	8.5€€Code Porting
	8.5.1€€Finding Which Modules Need To Be Loaded

	8.6€€ModPerl::Registry Family
	8.7€€Method Handlers
	8.8€€Apache::StatINC Replacement

	9€€That's all folks!
	9.1€€Thanks
	9.2€€References
	9.3€€A Shameless Plug

